Rahman, GauharBaleanu, DumitruAl Qurashi, MaysaaPurohit, Sunil DuttMubeen, ShahidArshad, MuhammadMatematik2020-02-282020-02-282017Rahman, Gauhar...et al. (2017). "The extended Mittag-Leffler function via fractional calculus", Journal Of Nonlinear Sciences And Applications, Vol.10, No.8, pp.4244-4253.2008-18982008-1901https://doi.org/10.22436/jnsa.010.08.19Rahman, Gauhar/0000-0002-2728-7537; Arshad, Muhammad/0000-0003-3041-328XIn this study, our main attempt is to introduce fractional calculus (fractional integral and differential) operators which contain the following new family of extended Mittag-Leffler function: E-alpha,beta(gamma;q,c) (z) = Sigma(infinity)(n=0) B-p (gamma + nq, c - gamma)(c)(nq) z(n)/B(gamma, c - gamma)Gamma(alpha n + beta) n!' (z,beta,gamma is an element of C), as its kernel. We also investigate a certain number of their consequences containing the said function in their kernels. (C) 2017 All rights reserved.eninfo:eu-repo/semantics/openAccessFractional IntegrationDifferential OperatorMittag-Leffler FunctionLebesgue Measurable FunctionExtended Mittag-Leffler FunctionThe extended Mittag-Leffler function via fractional calculusThe Extended Mittag-Leffler Function Via Fractional CalculusArticle1084244425310.22436/jnsa.010.08.19WOS:000409353500019N/AN/A