Golmankhaneh, Alireza K.Baleanu, DumitruGolmankhaneh, Ali K.Baleanu, DumitruMatematik2016-08-092016-08-092011Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D. (2011). On nonlinear fractional Klein-Gordon equation. Signal Processing, 91(3), 446-451. http://dx.doi.org/10.1016/j.sigpro.2010.04.0160165-16841872-7557https://doi.org/10.1016/j.sigpro.2010.04.016Alireza/0000-0002-3490-7976; Khalili Golmankhaneh, Alireza/0000-0003-1529-7807; Khalili Golmankhaneh, Alireza/0000-0002-5008-0163Numerical methods are used to find exact solution for the nonlinear differential equations. In the last decades Iterative methods have been used for solving fractional differential equations. In this paper, the Homotopy perturbation method has been successively applied for finding approximate analytical solutions of the fractional nonlinear Klein-Cordon equation can be used as numerical algorithm. The behavior of solutions and the effects of different values of fractional order a are shown graphically. Some examples are given to show ability of the method for solving the fractional nonlinear equation. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.eninfo:eu-repo/semantics/closedAccessCaputo Fractional DerivativeFractional Klein GordonHomotopy Perturbation MethodNumerical AlgorithmIteration MethodOn nonlinear fractional Klein-Gordon equationOn Nonlinear Fractional Klein-Gordon EquationArticle91344645110.1016/j.sigpro.2010.04.0162-s2.0-78049333706WOS:000288038800008Q2Q1