Baleanu, DumitruDeng, Zhen-GuoWu, Guo-Cheng02.02. Matematik02. Fen-Edebiyat Fakültesi01. Çankaya Üniversitesi2017-03-292025-09-182017-03-292025-09-182015Wu, G:C., Baleanu, D., Deng, Z.G. (2015). Variational iteration method as a kernel constructive technique. Applied Mathematical Modelling, 39(15), 4378-4384. http://dx.doi.org/10.1016/j.apm.2014.12.0320307-904X1872-8480https://doi.org/10.1016/j.apm.2014.12.032https://hdl.handle.net/20.500.12416/14243Wu, Guo-Cheng/0000-0002-1946-6770The variational iteration method newly plays a crucial role in establishing new integral equations. The Lagrange multipliers of the method serve kernel functions of the Volterra integral equations. A concept of an optimal integral equation is proposed. Then nonlinear examples are used to show the strategy's efficiency. (C) 2014 Elsevier Inc. All rights reserved.eninfo:eu-repo/semantics/closedAccessVariational Iteration MethodVolterra Integral EquationDuffing EquationNumerical SolutionVariational Iteration Method as a Kernel Constructive TechniqueVariational iteration method as a kernel constructive techniqueArticle10.1016/j.apm.2014.12.0322-s2.0-84937637828