Baleanu, DumitruYang, Xiao-JunBaleanu, DumitruSrivastava, H. M.2017-04-182017-04-182015Yang, X.J., Baleanu,D., Srivastava, H.M. (2015). Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 47, 54-60. http://dx.doi.org/10.1016/j.aml.2015.02.0240893-9659https://hdl.handle.net/20.500.12416/1523In this letter, the local fractional similarity solution is addressed for the non-differentiable diffusion equation. Structuring the similarity transformations via the rule of the local fractional partial derivative operators, we transform the diffusive operator into a similarity ordinary differential equation. The obtained result shows the non-differentiability of the solution suitable to describe the properties and behaviors of the fractal content.eninfo:eu-repo/semantics/closedAccessSimilarity SolutionDiffusion EquationNon-differentiabilityLocal Fractional DerivativeLocal Fractional Partial Derivative OperatorsLocal fractional similarity solution for the diffusion equation defined on Cantor setsLocal Fractional Similarity Solution for the Diffusion Equation Defined on Cantor SetsArticle47546010.1016/j.aml.2015.02.024