Yang, Xiao-JunBaleanu, DumitruBaleanu, DumitruSrivastava, H. M.Matematik2017-04-182017-04-182015Yang, X.J., Baleanu,D., Srivastava, H.M. (2015). Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 47, 54-60. http://dx.doi.org/10.1016/j.aml.2015.02.0240893-96591873-5452https://doi.org/10.1016/j.aml.2015.02.024Yang, Xiao-Jun/0000-0003-0009-4599; Srivastava, Hari M./0000-0002-9277-8092In this letter, the local fractional similarity solution is addressed for the non-differentiable diffusion equation. Structuring the similarity transformations via the rule of the local fractional partial derivative operators, we transform the diffusive operator into a similarity ordinary differential equation. The obtained result shows the non-differentiability of the solution suitable to describe the properties and behaviors of the fractal content. (C) 2015 Published by Elsevier Ltd.eninfo:eu-repo/semantics/openAccessSimilarity SolutionDiffusion EquationNon-DifferentiabilityLocal Fractional DerivativeLocal Fractional Partial Derivative OperatorsLocal fractional similarity solution for the diffusion equation defined on Cantor setsLocal Fractional Similarity Solution for the Diffusion Equation Defined on Cantor SetsArticle47546010.1016/j.aml.2015.02.0242-s2.0-84939986878WOS:000355374700009Q1Q1