Taş, KenanKushpel, A.Taş, Kenan2020-12-242020-12-242021Kushpel, A.; Taş, Kenan (2021). "The radii of sections of origin-symmetric convex bodies and their applications", Journal of Complexity, Vol. 62.0885-064Xhttps://hdl.handle.net/20.500.12416/4387LetVandWbe any convex and origin-symmetric bodies inRn.AssumethatforsomeA∈L(Rn→Rn),detA̸=0,Viscontainedin the ellipsoidA−1Bn(2), whereBn(2)is the unit Euclidean ball. WegivealowerboundfortheW-radiusofsectionsofA−1Vintermsof the spectral radius ofA∗Aand the expectations of∥·∥Vand∥·∥Wowith respect to Haar measure onSn−1⊂Rn. It is shownthattherespectiveexpectationsareboundedasn→∞inmanyimportant cases. As an application we offer a new method ofevaluation ofn-widths of multiplier operators. As an examplewe establish sharp orders ofn-widths of multiplier operatorsΛ:Lp(Md)→Lq(Md), 1<q≤2≤p<∞on compacthomogeneous Riemannian manifoldsMd. Also, we apply theseresults to prove the existence of flat polynomials onMd.eninfo:eu-repo/semantics/closedAccessConvex BodyVolumeMultiplierWidthThe radii of sections of origin-symmetric convex bodies and their applicationsThe Radii of Sections of Origin-Symmetric Convex Bodies and Their ApplicationsArticle62