Golmankhaneh, Alireza KhaliliBaleanu, DumitruGolmankhaneh, Ali KhaliliBaleanu, DumitruMatematik2020-05-202020-05-202013Lagrangian and Hamiltonian Mechanics on Fractals Subset of Real-Line By:Golmankhaneh, AK (Golmankhaneh, Alireza Khalili)[ 1 ] ; Golmankhaneh, AK (Golmankhaneh, Ali Khalili)[ 1 ] ; Baleanu, D (Baleanu, Dumitru)[ 4,2,3 ]0020-77481572-9575https://doi.org/10.1007/s10773-013-1733-xKhalili Golmankhaneh, Alireza/0000-0003-1529-7807; Khalili Golmankhaneh, Alireza/0000-0002-5008-0163; , Alireza/0000-0002-3490-7976A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested.eninfo:eu-repo/semantics/closedAccessFractal CalculusLagrangian MechanicsHamiltonian MechanicsPoisson BracketVariational CalculusLagrangian and Hamiltonian Mechanics on Fractals Subset of Real-LineLagrangian and Hamiltonian Mechanics on Fractals Subset of Real-LineArticle52114210421710.1007/s10773-013-1733-x2-s2.0-84884851076WOS:000325131000043Q3Q2