Temel Mühendislik Ana Bilim Dalı
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/1818
Browse
Browsing Temel Mühendislik Ana Bilim Dalı by Access Right "info:eu-repo/semantics/openAccess"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article A Thermodynamic Study On Pbzr0.52Ti0.48O3 Ceramic Close to the Tetragonal-Cubic Transition(Springer, 2020) Kiracı, Ali; 42475The isobaric Grüneisen parameter and the wavenumber (frequency) of various Raman modes in PbZr1-xTixO3 (PZT x = 0.48) ceramic were calculated by means of the unit cell volume of this crystal. In addition, the damping constant (linewidth) of the Raman modes studied was computed from the pseudospin-phonon coupled and from the energy fluctuation models close to the tetragonal-cubic transition temperature of TC = 650 K. This calculation of the damping constant performed in terms of the order parameter (spontaneous polarization), which was associated with the wavenumbers of the Raman modes studied. Furthermore, the inverse relaxation time of the Raman modes in this ceramic calculated and the values of the activation energy were deduced in terms of the Arrhenius plot close to the tetragonal-cubic transition in PZT (x = 0.48) ceramic. Finally, the temperature dependence of some thermodynamic quantities, such as the isothermal compressibility and the specific heat of this ceramic, was predicted.Article Analysis of the Specific Heat and the Free Energy of [N(Ch 3 ) 4 ] 2 Znbr 4 Close to the Ferro-Paraelastic Phase Transition(Taylor&Francis LTD, 2019) Kiracı, Ali; 42475A power-law formula deduced from the Ising model was used to analyze the temperature dependence of the specific heat C p and the Gibbs free energy G of [N(CH 3 ) 4 ] 2 ZnBr 4 compound in the vicinity of the phase transition temperature of T C = 287.2 K. Obtained values of the critical exponents α from the Gibbs free energy were consistent with that predicted from 2-d potts model (α = 0.3), while obtained values of α from the specific heat in both ferroelastic and paraelastic phases were consistent with that predicted from the mean field theory (α = 0) in the vicinity of the phase transition temperature. This is an indication of that [N(CH 3 ) 4 ] 2 ZnBr 4 compound undergoes a second order type phase transition. Also, the enthalpy (H) and the entropy (S) of this crystal were calculated in terms of the extracted values of the critical exponent in both ferroelastic and paraelastic phases.Article Calculation of the frequency shifts and damping constant for the Raman modes (A(1g), B-1) near the tetragonal-cubic transition in SrTiO3(Scientific Technical Research Council Turkey-Tubitak, 2017) Kiracı, Ali; Yurtseven, Hasan Hamit; 42475Raman shifts of the soft mode A(1g) and the B-1 mode are calculated at various pressures at room temperature for the cubic-tetragonal transition (P-c = 9.5 GPa) in SrTiO3. This calculation is performed using the observed volume data through the mode Gruneisen parameters of A(1g) and B-1 which vary with pressure, by fitting to the experimental wavenumbers in this crystalline system. Calculated Raman shifts are then used as order parameters to predict the pressure dependence of the damping constant and the inverse relaxation time for the cubic-tetragonal transition in SrTiO3. Our predictions from the pseudospin-phonon coupling and the energy fluctuation models can be compared with the experimental measurements when available in the literature.