Elektrik Elektronik Mühendisliği Bölümü Tezleri
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/2057
Browse
Browsing Elektrik Elektronik Mühendisliği Bölümü Tezleri by Author "Alak, Iman Khalil"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Citation Count: Iman Khalil Alak (2018). Speech signal denoising with wavelets / Dalgacık dönüşümü ile konuşma sinyali gürültü temizlenmesi. Yayımlanmış yüksek lisans tezi. Ankara: Çankaya Üniversitesi Fen Bilimleri Enstitüsü.Speech signal denoising with wavelets(2018-05-23) Alak, Iman Khalil; Çankaya Üniversitesi, Fen Bilimleri Enstitüsü, Elektronik ve Haberleşme Mühendisliği BölümüBu çalışma konuşma sinyalinden gürültünün arındırılması için dalgacık dönüşümünün performansını incelemeyi amaçlamaktadır. Dalgacıklar sayısal konuşma işlemede özellikle kodlama, iyileştirme veya gürültü temizlemede yaygın olarak kullanılırlar. Pekçok koşulda, doğal konuşma sinyalini anlama arkaplan gürültüsü nedeniyle zorlu bir iştir. Konuşma gürültüsü temizleme algoritmasının amacı gürültüyü minimum bozulmayla temizleyerek orjinal konuşma sinyalini kurtarmaktır. Konuşma sinyalini gürültüden temizlemede kullanılacak değişik metotlar mevcuttur. Kullanılan gürültü temizleme algoritmalarının pekçoğu bu işlemi, gürültü sinyalinin güç spectral yoğunluğunun kısa pencere aralıklarında incelenebildiği frekans düzleminde gerçekleştirir. Daha sonra, gürültülü sesin herbir pencere aralığı için temiz sesin spectral frekans ve genliği tahmin edilir. Sonuç olarak, metotlara bağlı olarak tahmin hataları ortaya çıkar. Tahmin hatalarını minimuma indirmek için yıllardır değişik spectral tahmin teknikleri araştırılmıştır. Bu çalışmada, gürültülü konuşma sinyalini temizlemede kesikli dalgacık dönüşüm tekniği kullanılmıştır. Kesikli dalgacık dönüşümünün performansı Daubechies, Symlets veya Coiflets gibi dalgacık filtreler kullanılarak değerlendirilmiştir. Analiz MATLAB yazılımı üzerinde gerçekleştirilmiştir. Gürültülü konuşma sinyali olarak babble gürültü (kalabalık insan grubu) veya farklı tipte arkaplan araç gürültüleri (arabalar, tren, uçak vs) gibi çevresel arkaplan gürültüleri içeren konuşmalar analiz edilmiştir. Bunlar konuşma sinyalinden dalgacık analizle temizlenmiştir. Gürültülü konuşma sinyali, soft ve hard eşikleme teknikleri içeren Sgtwolog, Heursure, Rigrsure ve Minimaxi eşikleme teknikleri olarak dört farklı eşik metodu kullanarak alt parçalara bölünmüştür. Tekrar oluşturulan konuşma sinyali ve gürültülü sinyal karşılaştırılarak sinyal-gürültü oranı (SNR) ve hatanın ortalama karekökü (MSE) hesaplanarak ölçülmüştür. Çalışmanın katkıları, farklı wavelet ailelerinin farklı arkaplan gürültülerine karşı performans kıyaslamalarının detaylı analizi ve gürültülü konuşma sinyalinden gürültü temizleme için etkin bir metodun (Maximal overlap DWT-MODWT) ortaya konmasıdır.