PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/8650
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by Author "115500"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 14Citation - Scopus: 14Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills(Springer, 2017) Cagiltay, Nergiz Ercil; Ozcelik, Erol; Sengul, Gokhan; Berker, Mustafa; 115500; PsikolojiBackground In neurosurgery education, there is a paradigm shift from time-based training to criterion-based model for which competency and assessment becomes very critical. Even virtual reality simulators provide alternatives to improve education and assessment in neurosurgery programs and allow for several objective assessment measures, there are not many tools for assessing the overall performance of trainees. This study aims to develop and validate a tool for assessing the overall performance of participants in a simulation-based endoneurosurgery training environment. Methods A training program was developed in two levels: endoscopy practice and beginning surgical practice based on four scenarios. Then, three experiments were conducted with three corresponding groups of participants (Experiment 1, 45 (32 beginners, 13 experienced), Experiment 2, 53 (40 beginners, 13 experienced), and Experiment 3, 26 (14 novices, 12 intermediate) participants). The results analyzed to understand the common factors among the performance measurements of these experiments. Then, a factor capable of assessing the overall skill levels of surgical residents was extracted. Afterwards, the proposed measure was tested to estimate the experience levels of the participants. Finally, the level of realism of these educational scenarios was assessed. Results The factor formed by time, distance, and accuracy on simulated tasks provided an overall performance indicator. The prediction correctness was very high for the beginners than the one for experienced surgeons in Experiments 1 and 2. When non-dominant hand is used in a surgical procedure-based scenario, skill levels of surgeons can be better predicted. The results indicate that the scenarios in Experiments 1 and 2 can be used as an assessment tool for the beginners, and scenario-2 in Experiment 3 can be used as an assessment tool for intermediate and novice levels. It can be concluded that forming the balance between perceived action capacities and skills is critical for better designing and developing skill assessment surgical simulation tools.Article Citation - WoS: 21Citation - Scopus: 23Insights From Pupil Size to Mental Workload of Surgical Residents: Feasibility of an Educational Computer-Based Surgical Simulation Environment (ECE) Considering the Hand Condition(Sage Publications inc, 2018) Dalveren, Gonca Gokce Menekse; Cagiltay, Nergiz Ercil; Ozcelik, Erol; Maras, Hakan; 115500; PsikolojiThe advantage of simulation environments is that they present various insights into real situations, where experimental research opportunities are very limited-for example, in endoscopic surgery. These operations require simultaneous use of both hands. For this reason, surgical residents need to develop several motor skills, such as eye-hand coordination and left-right hand coordination. While performing these tasks, the hand condition (dominant, nondominant, both hands) creates different degrees of mental workload, which can be assessed through mental physiological measures-namely, pupil size. Studies show that pupil size grows in direct proportion to mental workload. However, in the literature, there are very limited studies exploring this workload through the pupil sizes of the surgical residents under different hand conditions. Therefore, in this study, we present a computer-based simulation of a surgical task using eye-tracking technology to better understand the influence of the hand condition on the performance of skill-based surgical tasks in a computer-based simulated environment. The results show that under the both-hand condition, the pupil size of the surgical residents is larger than the one under the dominant and nondominant hand conditions. This indicates that when the computer-simulated surgical task is performed with both hands, it is considered more difficult than in the dominant and nondominant hand conditions. In conclusion, this study shows that pupil size measurements are sufficiently feasible to estimate the mental workload of the participants while performing surgical tasks. The results of this study can be used as a guide by instructional system designers of skill-based training programs.Article Citation - WoS: 12Citation - Scopus: 13The Effect of Training, Used-Hand, and Experience on Endoscopic Surgery Skills in an Educational Computer-Based Simulation Environment (ECE) for Endoneurosurgery Training(Sage Publications inc, 2019) Cagiltay, Nergiz Ercil; Ozcelik, Erol; Isikay, Ilkay; Hanalioglu, Sahin; Suslu, Ahmet E.; Yucel, Taskin; Berker, Mustafa; 115500; PsikolojiToday, virtual simulation environments create alternative hands-on practice opportunities for surgical training. In order to increase the potential benefits of such environments, it is critical to understand the factors that influence them. This study was conducted to determine the effects of training, used-hand, and experience, as well as the interactions between these variables, on endoscopic surgery skills in an educational computer-based surgical simulation environment. A 2-hour computer-based endoneurosurgery simulation training module was developed for this study. Thirty-one novice- and intermediate-level resident surgeons from the departments of neurosurgery and ear, nose, and throat participated in this experimental study. The results suggest that a 2-hour training during a 2-month period through computer-based simulation environment improves the surgical skills of the residents in both-hand tasks, which is necessary for endoscopic surgical procedures but not in dominant hand tasks. Based on the results of this study, it can be concluded that computer-based simulation environments potentially improve surgical skills; however, the scenarios for such training modules need to consider especially the bimanual coordination of hands and should be regularly adapted to the individual skill levels and progresses.