PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/8650
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by Author "Arpali, Caglar"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Flat topped beams and their characteristics in turbulent media(Optical Soc Amer, 2006) Eyyuboglu, Halil Tanyer; Arpali, Caglar; Baykal, Yahya Kemal; 7688; 7812The source and receiver plane characteristics of flat topped ( FT) beam propagating in turbulent atmosphere are investigated. To this end, source size, beam power and M(2) factor of source plane FT beam are derived. For a turbulent propagation medium, via Huygens Fresnel diffraction integral, the receiver plane intensity is found. Power captured within an area on the receiver plane is calculated. Kurtosis parameter and beam size variation along the propagation axis are formulated. Graphical outputs are provided displaying the variations of the derived source and receiver plane parameters against the order of flatness and propagation length. Analogous to free space behavior, when propagating in turbulence, the FT beam first will form a circular ring in the center. As the propagation length increases, the circumference of this ring will become narrower, giving rise to a downward peak emerging from the center of the beam, eventually turning the intensity profile into a pure Gaussian shape. (c) 2006 Optical Society of America.Article Simulator for general-type beam propagation in turbulent atmosphere(Optical Soc Amer, 2006) Arpali, Caglar; Yazicioglu, Canan; Eyyuboglu, Halil Tanyer; Arpali, Serap Altay; Baykal, Yahya; 7688; 7812; 51304A simulator is designed in MATLAB code which gives the propagation characteristics of a general-type beam in turbulent atmosphere. When the required source and medium parameters are entered, the simulator yields the average intensity profile along the propagation axis in a video format. In our simulator, the user can choose the option of a "user defined beam" in which the source and medium parameters are selected as requested by the user by entering numerical values in the relevant menu boxes. Alternatively, the user can proceed with the option of "pre-defined beam" in which the average intensity profiles of beams such as annular, cos-Gaussian, sine-Gaussian, cosh-Gaussian, sinh-Gaussian, their higher-order counterparts and flat-topped can be observed as they propagate in a turbulent atmosphere. Some samples of the simulator output are presented. (c) 2006 Optical Society of America