Browsing by Author "Akyurek, Turgut"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Analyses of Plate Perforation for Various Penetrator-Target Plate Combinations(Korean Soc Mechanical Engineers, 2022) Akyurek, Turgut; 01. Çankaya Üniversitesi; 06. Mühendislik Fakültesi; 06.06. Makine MühendisliğiIn this study, kinetics and kinematics of perforation process for various penetrator-target plate combinations is analyzed, a methodology in a flow chart format to decide on failure mode, and for each failure mode, an appropriate combined analytical model that requires only common test data is proposed. The proposed methodology and analytical models that are recommended for the related failure mode are assessed by using a huge amount of test data from the literature. The penetrator-target plate configurations cover the penetrators with ogive, conical, hemi-spherical and blunt noses, at different plate thicknesses, and plate thickness to penetrator diameter ratios, made of different metallic materials. Analyzed failure modes include ductile hole enlargement, plugging, dishing, and petal forming. Assessment is done for impact velocities ranging between 215-863 m/s. The estimations based on the proposed flow chart and recommended failure models are in good agreement with the related test data and numerical analysis results.Article Citation - WoS: 2Citation - Scopus: 2Analysis and Simplified Modelling of Simulation of Tests for Medium-Duty Truck Collision With Twin Anti-Ram Bollards(Taylor & Francis Ltd, 2020) Akyurek, Turgut; 48511; 01. Çankaya Üniversitesi; 06. Mühendislik Fakültesi; 06.06. Makine MühendisliğiAn actual test of medium-duty truck collision with twin anti-ram bollards of steel tube is analysed and simulated with different mass-spring-damper models to study bollard design requirements. Test data is obtained from test report of a medium-duty truck crashed into two fixed twin bollards at speed 78.3 km/h. Maximum impact load and impact height at that time is important in the analysis. Bollard height should be close to or larger than the vehicle's centre of gravity height to avoid climbing of the truck on the bollard. However, increasing impact height yields also increase in failure risk of bollard. Foundation is also critical in success of the bollard in successfully stopping the vehicle. The bollard should be fixed to the frame embedded in the concrete foundation so that the deformation in concrete be minimised. The bollard should be so stiff to stop the vehicle while most of the impact energy is absorbed by the vehicle through deformation of its frontal sections. A single-degree freedom linear mass-spring-damper model is the simplest model, but its results are not in line with test data. Single-degree non-linear model simulates the peak load but not the load history. However, using engine mass instead of truck mass in the single-degree model provides acceptable impact force data for the bollard. Two-degree freedom mass-spring damper linear model seems to simulate both truck's and bollard's deformation in a good manner. Non-linear analysis simulates the collision in a more realistic way, but it requires more data to be determined with testing.
