Browsing by Author "Ali, Rifaqat"
Now showing 1 - 16 of 16
- Results Per Page
- Sort Options
Article AggregationOperators for Interval-Valued Pythagorean FuzzyHypersoft Set with Their Application to SolveMCDMProblem(2023) Jarad, Fahd; Siddique, Imran; Ali, Rifaqat; Jarad, Fahd; Iampan, Aiyared; 234808Experts use Pythagorean fuzzy hypersoft sets (PFHSS) in their investigations to resolve the indeterminate and imprecise information in the decision-making process. Aggregation operators (AOs) perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception. In this paper, we extend the concept of PFHSS to interval-valued PFHSS (IVPFHSS), which is the generalized form of intervalvalued intuitionistic fuzzy soft set. The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set. It is the most potent method for amplifying fuzzy data in the decision-making (DM) practice. Some operational laws for IVPFHSS have been proposed. Based on offered operational laws, two inventive AOs have been established: interval-valued Pythagorean fuzzy hypersoft weighted average (IVPFHSWA) and interval-valued Pythagorean fuzzy hypersoft weighted geometric (IVPFHSWG) operators with their essential properties. Multi-criteria group decision-making (MCGDM) shows an active part in contracts with the difficulties in industrial enterprise for material selection. But, the prevalent MCGDM approaches consistently carry irreconcilable consequences. Based on the anticipated AOs, a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming. A real-world application of the projectedMCGDMmethod for material selection (MS) of cryogenic storing vessels is presented. The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.Article Bioconvection attribution for effective thermal transportation of upper convicted Maxwell nanofluid flow due to an extending cylindrical surface(2022) Jarad, Fahd; Siddique, Imran; Abdal, Sohaib; Jarad, Fahd; Ali, Rifaqat; Salamat, Nadeem; Hussain, Sajjad; 234808The growth of compact density heat gadgets demands effective thermal transportation. The option of nanofluid plays a dynamic role in this requirement. This research shows the impact of gyrotactic microorganisms on non-Newtonian fluid (Maxwell fluid) passing on the expanding cylindrical surface. The main objective of the present observation is to determine the heat and mass transportation of Maxwell nanofluid. The convective boundary condition and zero mass flux conditions are incorporated. In mathematical derivation, the approximation of the boundary layer is applied. The primal motivation pertains to exaggerating the thermal transport of heat exchangers in industrial processes. To attain the effects of Brownian motion as well as thermophoresis the Buongiorno nanofluid is utilized. By assimilating suitable transformation, the concluding simultaneous for a non-linear set of equations is tackled numerically by hiring Runge-Kutta procedure. The coding is developed and run in the Matlab environment. The leading partial differential system is converted into an ordinary differential system. The role of emerging parameters is elaborated. Also tangible quantities i.e. Skin friction factor, Nusselt number, Sherwood number, and motile density coefficient are enumerated. An accession in the magnetic field causes depreciation in the velocity profile. Where increment in Schmidt number Sc causes a decrement in Sherwood number. The suitable ranges of parameters where increasing or decreasing behavior becomes smooth are taken as 0.0 ≤ M ≤ 6.0, 0.0 ≤ γ≤ 0.8, 0.7 ≤ Pr ≤ 1.0, 0.1 ≤ Nt ≤ 0.7, 0.01 ≤ Nb ≤ 0.1, 3.0 ≤ Sc ≤ 6.0, 2.0 ≤ Lb ≤ 7.0, 0.1 ≤ Pe ≤ 0.7 and 1.0 ≤ δ≤ 7.0. The applications of the current study can be seen in chemical and metallurgical industries, the process of thermo-fluid, power generation, executed via condensers, cooling, and heating in large buildings, transportation, etc.Article Bioconvection of MHD Second-Grade Fluid Conveying Nanoparticles over an Exponentially Stretching Sheet: A Biofuel Applications(2023) Jarad, Fahd; Nadeem, Muhammad; Ali, Rifaqat; Jarad, Fahd; 234808The current research examines the role of chemical reaction, nonlinear thermal radiation and slippage impact on magnetic second-grade fluid flow with diluted dispersion of nanoparticles using a theoretical bioconvection model over an exponentially stretched sheet. There are also new characteristics such as Brownian motion and thermophoresis. In the problem formulation, the boundary layer approximation is used. Using the suitable transformations, the energy, momentum, micro-organisms and concentration equations are generated into nonlinear ordinary differential equations (ODEs). The solution to the resultant problems was calculated via the Homotopy analysis method (HAM). Environmental parameters' effects on velocity, temperature, microbes and concentration profiles are graphically displayed. When comparing the current results to the previous literature, there was also a satisfactory level of agreement. In comparison with a flow based on constant characteristics, the flow with variable thermal conductivity is shown to be significantly different and realistic. The temperature and motile density of the fluid grew in direct proportion to the thermophoresis motion, buoyancy ratio and Brownian motion parameters. Also, the motile density profile decreases down for Pe and Lb while increasing when bioconvection Rayleigh number and buoyancy ratio. This work is significant to bioinspired nanofluid enhanced fuel cells and nanomaterials production techniques, according to these research studies.Article Case Studies in Thermal Engineering(2022) Jarad, Fahd; Siddique, Imran; Ali, Rifaqat; Jarad, Fahd; Abdal, Sohaib; Hussain, Sajjad; 234808We scrutinized the influence of nonlinear heat radiation on heat transmission evaluation of Carreau nanofluid and tangent hyperbolic nanofluid streams across a wedge with gyrotactic microorganisms by taking slip situations into consideration in this research article. The necessary nonlinear partial differential formulation is transmuted into non-linear ordinary differential equations by employing appropriate similarity variables, and these equations, including the boundary constraints are resolved in Matlab software utilizing Runge-Kutta fourth order via shooting tactic. A definite description of the framework is achieved by fluctuating the inputs of influential variables of the dependent functions and exhibited via graphs. The inhibiting flow velocity is portrayed by the intensifying inputs of buoyancy ratio, magnetic force, Rayleigh number, and eigenvalue. As a consequence of thermophoresis and Brownian motion of nano-particles, the temperature of the liquids initiates to ascend instantly. Because of differentiated viscous effects, the flow velocity for Carreau nanofluid is slower than that of tangent hyperbolic fluid and the temperature behavior is reversed. Further, the magnitude of skin friction factor for tangent hyperbolic nanofluid is almost half ofs that of Carreau nanofluid.Article Einstein Weighted Geometric Operator for Pythagorean Fuzzy Hypersoft with Its Application in Material Selection(2023) Jarad, Fahd; Siddique, Imran; Ali, Rifaqat; Jarad, Fahd; Iampan, AiyaredHypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications. Pythagorean fuzzy hypersoft set (PFHSS) is the most influential and capable leeway of the hypersoft set (HSS) and Pythagorean fuzzy soft set (PFSS). It is also a general form of the intuitionistic fuzzy hypersoft set (IFHSS), which provides a better and more perfect assessment of the decision-making (DM) process. The fundamental objective of this work is to enrich the precision of decision-making. A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric (PFHSEWG) based on Einstein's operational laws has been developed. Some necessary properties, such as idempotency, boundedness, and homogeneity, have been presented for the anticipated PFHSEWG operator. Multi-criteria decision-making (MCDM) plays an active role in dealing with the complications of manufacturing design for material selection. However, conventional methods ofMCDMusually produce inconsistent results. Based on the proposed PFHSEWG operator, a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences. The expected MCDM method for material selection (MS) of cryogenic storing vessels has been established in the real world. Significantly, the planned model for handling inaccurate data based on PFHSS is more operative and consistent.Article Engine oil based MoS2Casson nanofluid flow with ramped boundary conditions and thermal radiation through a channel(2022) Jarad, Fahd; Sadiq, Kashif; Jaradat, Mohammed M.M.; Ali, Rifaqat; Jarad, Fahd; 234808The modern era is a time to have cost-effective and energy-efficient technology. This demand has made nanotechnology the most effective field. The focus of this article is to increase the efficiency of engine oil (EO). The flow of EO-based Casson nanofluid containing Molybdenum disulfide (MoS2) nanoparticles is investigated with ramped wall conditions and thermal radiation. Analytical results are calculated via the Laplace transform. The impact of physical parameters on isothermal and ramped conditions is illustrated graphically and discussed in detail. The researchers found that flow, mass, and energy can be controlled by using ramped conditions. The variation in concentration, temperature, and velocity is exponential for isothermal conditions and steady for ramped wall conditions. Finally, the results of Nusselt numbers, skin frictions, and Sherwood numbers on both walls of the channel for both isothermal and ramped conditions are graphically depicted and discussed. For higher values of time the results of ramped and isothermal wall conditions are identical. It is found that the nanoparticles of MoS2 enhance the lubrication and heat transport rates of EO.Article Extension of Einstein Average Aggregation Operators to Medical Diagnostic Approach Under q-Rung Orthopair Fuzzy Soft Se(2022) Jarad, Fahd; Rehman, Hafiz Khalil Ur; Awrejcewicz, Jan; Ali, Rifaqat; Siddique, Imran; Jarad, Fahd; Iampan, Aiyared; 234808The paradigm of the soft set (SS) was pioneered by Moldotsov in 1999 by prefixing the parametrization tool in accustomed sets, which yields general anatomy in decision-making (DM) problems. The q-rung orthopair fuzzy soft set (q-ROFSS) is an induced form of the intuitionistic fuzzy soft set (IFSS) and Pythagorean fuzzy soft set (PFSS). It is also a more significant structure to tackle complex and vague information in DM problems than IFSS and PFSS. This manuscript explores new notions based on Einstein's operational laws for q-rung orthopair fuzzy soft numbers (q-ROFSNs). Our main contribution is to investigate some average aggregation operators (AOs), such as q-rung orthopair fuzzy soft Einstein weighted average (q-ROFSEWA) and q-rung orthopair fuzzy soft Einstein ordered weighted average (q-ROFSEOWA) operators. Besides, the fundamental axioms of proposed operators are discussed. Multi-criteria group decision-making (MCGDM) is vigorous in dealing with the compactness of real-world obstacles, and still, the prevailing MCGDM methods constantly convey conflicting consequences. Based on offered AOs, a robust MCGDM approach is deliberated to accommodate the defects of the prevalent MCGDM methodologies under the q-ROFSS setting. Based on the planned MCGDM method, a medical diagnostic procedure is implemented to recognize the nature of certain infections in different patients. The protracted model estimates illustrious score values to determine patients' health compared to prevailing models, which is more helpful for healthcare experts in identifying the severity of diseases in patients. Furthermore, an inclusive comparative analysis is accomplished to ratify the pragmatism and effectiveness of the proposed technique with some formerly standing methods. The consequences gained over comparative studies display that our established method is more proficient than predominant methodologies.Article Hyers-ulam-mittag-leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform(2022) Baleanu, Dumitru; Deepa, Swaminathan; Baleanu, Dumitru; Santra, Shyam Sundar; Moaaz, Osama; Govindan, Vediyappan; Ali, Rifaqat; 56389In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform. © 2022 the Author(s), licensee AIMS Press.Article Impact of Ramped Concentration and Temperature on MHD Casson Nanofluid Flow through a Vertical Channel(2021) Jarad, Fahd; Siddique, Imran; Ali, Rifaqat; Jarad, Fahd; 234808The mass and heat transport of Casson nanofluid flow in a channel under the influence of the magnetic field, heat generation, chemical reaction, ramped concentration, and ramped temperature is studied. Nanoparticles of copper (Cu) are inserted in sodium alginate (SA) to make nanofluid. The definition of time-fractional Caputo derivative is applied to have the fractional model. The analytical results of concentration, temperature, velocity, skin friction, Sherwood numbers, and Nusselt numbers for ramped and isothermal boundary conditions are obtained in the form of summation after applying the Laplace inverse transform. The effects of the fractional parameter (ξ) and physical parameters are depicted graphically. For higher values of ξ the velocity, concentration and temperature reduce. The fractional model is a better choice to control velocity, concentration, and temperature profiles. The energy enhances by increasing volume fraction (φ), whereas mass and flow of nanofluid reduce. The Sherwood and Nusselt numbers for both isothermal and ramped conditions increase by increasing φ. Ramped conditions can control the flow, mass, and heat of the nanofluid. © 2021 Kashif Sadiq et al.Article Multicriteria Decision-Making Approach for Aggregation Operators of Pythagorean Fuzzy Hypersoft Sets(2021) Jarad, Fahd; Zulqarnain, Rana Muhammad; Ali, Rifaqat; Jarad, Fahd; Iampan, Aiyared; 234808The Pythagorean fuzzy hypersoft set (PFHSS) is the most advanced extension of the intuitionistic fuzzy hypersoft set (IFHSS) and a suitable extension of the Pythagorean fuzzy soft set. In it, we discuss the parameterized family that contracts with the multi-subattributes of the parameters. The PFHSS is used to correctly assess insufficiencies, anxiety, and hesitancy in decision-making (DM). It is the most substantial notion for relating fuzzy data in the DM procedure, which can accommodate more uncertainty compared to available techniques considering membership and nonmembership values of each subattribute of given parameters. In this paper, we will present the operational laws for Pythagorean fuzzy hypersoft numbers (PFHSNs) and also some fundamental properties such as idempotency, boundedness, shift-invariance, and homogeneity for Pythagorean fuzzy hypersoft weighted average (PFHSWA) and Pythagorean fuzzy hypersoft weighted geometric (PFHSWG) operators. Furthermore, a novel multicriteria decision-making (MCDM) approach has been established utilizing presented aggregation operators (AOs) to resolve decision-making complications. To validate the useability and pragmatism of the settled technique, a brief comparative analysis has been conducted with some existing approaches.Article Neutrosophic Hypersoft Matrices with Application to Solve Multiattributive Decision-Making Problems(2021) Jarad, Fahd; Abdeljawad, Thabet; Ali, Rifaqat; Jarad, Fahd; Samad, Abdul; Abdeljawad, Thabet; 234808The concept of the neutrosophic hypersoft set (NHSS) is a parameterized family that deals with the subattributes of the parameters and is a proper extension of the neutrosophic soft set to accurately assess the deficiencies, anxiety, and uncertainty in decision-making. Compared with existing research, NHSS can accommodate more uncertainty, which is the most significant technique for describing fuzzy information in the decision-making process. The main objective of the follow-up study is to develop the theory of neutrosophic hypersoft matrix (NHSM). The NHSM is the generalized form of a neutrosophic soft matrix (NSM). Some fundamental operations and score function for NHSMs have been introduced with their desirable properties. Furthermore, we introduce the logical operators such as OR-operator and AND-operator with their fundamental properties in the following research. The necessity and possibility operations for NHSMs have been established. Utilizing the developed score function, a decision-making methodology has been developed to solve the multiattribute decision-making (MADM) problem. To ensure the validity of the proposed approach, a numerical illustration has been described for the selection of competent faculty member. The practicality and effectiveness of the current approach are proved through comparative analysis with the assistance of some existing studies. © 2021 Rana Muhammad Zulqarnain et al.Article On bioconvection and mass transpiration of micropolar nanofluid dynamics due to an extending surface in existence of thermal radiations(2021) Baleanu, Dumitru; Abdal, Sohaib; Ali, Rifaqat; Baleanu, Dumitru; Siddique, Imran; 56389This study examines the magnetic effects of heat and mass transmission on the flow of micropolar fluid over a permeable stretching geometry with dilute homogeneous dispersion of nano-particles and gyrotactic microorganisms. A system of coupled highly non-linear PDEs is renovated into corresponding ODEs by using similarity functions. These transmuted equations are resolved for a solution with shooting technique accompanied with Runge-Kutta fourth order. The variations of intricate physical quantities such as temperature, micro-motion, concentration, velocity, and motile micro-organism profiles are evaluated under the influence of the emerging parameters. The velocity profile decreases down with upsurge values of magnetic parameter M while micro-rotation is strengthened and its value becomes higher directly with increments in M. The microorganisms profile depict the diminishing behavior with the growing value of bioconvection Lewis number. These results are useful for obtaining better solutions for heat transfer devices and micropolar fuel cells. Additionally, the impact of the parameter of Brownian motion, Rayleigh number, and the parameter of thermophoresis, Peclet number, and buoyancy ratio parameter were discussed numerically and graphically. Moreover, the numerical results were validated by comparing them with previously obtained exact solution for special cases and acceptable compatibility between the two results is achieved. The findings from this work can be utilized for efficient heat exchangers and thermal balance in micro-electronics.Article Selection of an Effective Hand Sanitizer to Reduce COVID-19 Effects and Extension of TOPSIS Technique Based on Correlation Coefficient under Neutrosophic Hypersoft Set(2021) Sermutlu, Emre; Jarad, Fahd; Abdeljawad, Thabet; Ali, Rifaqat; Siddique, Imran; Jarad, Fahd; Abdeljawad, Thabet; 234808Correlation coefficients are used to tackle many issues that include indistinct as well as blurred information excluding is not able to deal with the general fuzziness along with obscurity of the problems that have various information. The correlation coefficient (CC) between two variables plays an important role in statistics. Likewise, the accuracy of relevance assessment depends on the information in a set of discourses. The data collected for numerous statistical studies is full of exceptions. The concept of the neutrosophic hypersoft set (NHSS) is a parameterized family that deals with the subattributes of the parameters and is a proper extension of the neutrosophic soft set to accurately assess the deficiencies, anxiety, and uncertainty in decision-making. Compared with existing research, NHSS can accommodate more uncertainty, which is the most significant technique for describing fuzzy information in the decision-making process. The core objective of follow-up research is to develop the concept and characteristics of CC and the weighted correlation coefficient (WCC) of NHSS. We also introduced some aggregation operators in the considered environment, which can help us establish a prioritization technique for order preference by similarity to the ideal solution (TOPSIS) based on CC and WCC under NHSS. A decision-making strategy is established to solve multicriteria group decision-making (MCGDM) problems utilizing developed methodology. Moreover, the proposed method is utilized for the selection of an effective hand sanitizer during the COVID-19 pandemic to ensure the validity of the proposed approach. The practicality, effectivity, and flexibility of the current approach are proved through comparative analysis with the assistance of some existing studies.Article Significance of double diffusion for unsteady Carreau micropolar nanofluid transportation across an extending sheet with thermo-radiation and uniform heat source(2021) Jarad, Fahd; Siddique, Imran; Jarad, Fahd; Ali, Rifaqat; Abdal, Sohaib; Hussain, Sajjad; 234808The main objective of this manuscript is to glance into the assets of nanoparticles in the stream of generalized micropolar fluid and Carreau fluid against an intensified elongated surface. In order to assess, the heat and mass diffusion occurrences, the Cattaneo-Christov implications are also experienced in the temperature and concentration computations. In contrast to prior studies, rheological attributes on non-Newtonian fluids are depicted by engaging micropolar fluid and Carreau liquid that reflect a clear difference of transport phenomena. By minimizing the number of independent factors, the regulating equations are transmuted into non-dimensional types, that are then tackled numerically using the RK-4 algorithm along with the shooting strategy. For velocity, micro-rotation, temperature and concentration distributions, a visualization evaluation of the entangled flow parameters is executed. It has been revealed that expanding magnetic and micropolar constraints enhance micro-rotation velocity. The unsteadiness parameter enhances all three physical quantities, surface drag force, Nusselt number, and Sherwood number.Article Significance of nanoparticles aggregation on the dynamics of rotating nanofluid subject to gyrotactic microorganisms, and Lorentz force(2022) Jarad, Fahd; Siddique, Imran; Ali, Rifaqat; Awrejcewicze, Jan; Jarad, Fahd; Khalifa, Hamiden Abd El-Wahed; 234808The significance of nanoparticle aggregation, Lorentz and Coriolis forces on the dynamics of spinning silver nanofluid flow past a continuously stretched surface is prime significance in modern technology, material sciences, electronics, and heat exchangers. To improve nanoparticles stability, the gyrotactic microorganisms is consider to maintain the stability and avoid possible sedimentation. The goal of this report is to propose a model of nanoparticles aggregation characteristics, which is responsible to effectively state the nanofluid viscosity and thermal conductivity. The implementation of the similarity transforQ1m to a mathematical model relying on normal conservation principles yields a related set of partial differential equations. A well-known computational scheme the FEM is employed to resolve the partial equations implemented in MATLAB. It is seen that when the effect of nanoparticles aggregation is considered, the temperature distribution is enhanced because of aggregation, but the magnitude of velocities is lower. Thus, showing the significance impact of aggregates as well as demonstrating themselves as helpful theoretical tool in future bioengineering and industrial applications.Article Some Einstein Geometric Aggregation Operators for q-Rung Orthopair Fuzzy Soft Set With Their Application in MCDM(2022) Jarad, Fahd; Ali, Rifaqat; Awrejcewicz, Jan; Siddique, Imran; Jarad, Fahd; 234808q-rung orthopair fuzzy soft sets (q-ROFSS) is a progressive form for orthopair fuzzy sets. It is also an appropriate extension of intuitionistic fuzzy soft sets (IFSS) and Pythagorean fuzzy soft sets (PFSS). The strict prerequisite gives assessors too much autonomy to precise their opinions about membership and non-membership values. The q-ROFSS has a wide range of real-life presentations. The q-ROFSS capably contracts with unreliable and ambiguous data equated to the prevailing IFSS and PFSS. It is the most powerful method for amplifying fuzzy data in decision-making. The hybrid form of orthopair q-rung fuzzy sets with soft sets has emerged as a helpful framework in fuzzy mathematics and decision-making. The hybrid structure of q-rung orthopair fuzzy sets with soft sets has occurred as an expedient context in fuzzy mathematics and decision-making. The fundamental impartial of this research is to propose Einstein's operational laws for q-rung orthopair fuzzy soft numbers (q-ROFSNs). The core objective of this research is to develop some geometric aggregation operators (AOs), such as q-rung orthopair fuzzy soft Einstein weighted geometric (q-ROFSEWG), and q-rung orthopair fuzzy soft Einstein ordered weighted geometric (q-ROFSEOWG) operators. We will discuss the idempotency, boundedness, and homogeneity of the proposed AOs. Multi-criteria decision-making (MCDM) is dynamic in dealing with the density of real-world complications. Still, the prevalent MCDM techniques consistently deliver irreconcilable outcomes. Based on the presented AOs, a strong MCDM technique is deliberate to accommodate the flaws of the prevailing MCDM approaches under the q-ROFSS setting. Moreover, an inclusive comparative analysis is executed to endorse the expediency and usefulness of the suggested method with some previously existing techniques. The outcomes gained through comparative studies spectacle that our established approach is more capable than prevailing methodologies.