Browsing by Author "Aly, Ayman A."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation Count: Rashid, Saima...et.al. (2022). "A novel numerical dynamics of fractional derivatives involving singular and nonsingular kernels: designing a stochastic cholera epidemic model", Aims Mathematics, Vol.8, No. 2, pp. 3484-3522.A novel numerical dynamics of fractional derivatives involving singular and nonsingular kernels: designing a stochastic cholera epidemic model(2022) Rashid, Saima; Jarad, Fahd; Alsubaie, Hajid; Aly, Ayman A.; Alotaibi, Ahmed; 234808In this research, we investigate the direct interaction acquisition method to create a stochastic computational formula of cholera infection evolution via the fractional calculus theory. Susceptible people, infected individuals, medicated individuals, and restored individuals are all included in the framework. Besides that, we transformed the mathematical approach into a stochastic model since it neglected the randomization mechanism and external influences. The descriptive behaviours of systems are then investigated, including the global positivity of the solution, ergodicity and stationary distribution are carried out. Furthermore, the stochastic reproductive number for the system is determined while for the case Rs0 > 1, some sufficient condition for the existence of stationary distribution is obtained. To test the complexity of the proposed scheme, various fractional derivative operators such as power law, exponential decay law and the generalized Mittag-Leffler kernel were used. We included a stochastic factor in every case and employed linear growth and Lipschitz criteria to illustrate the existence and uniqueness of solutions. So every case was numerically investigated, utilizing the newest numerical technique. According to simulation data, the main significant aspects of eradicating cholera infection from society are reduced interaction incidence, improved therapeutic rate, and hygiene facilities.Article Citation Count: Li, Yun-Xiang...et al. (2021). "Evaluation the vibrational behavior of carbon nanotubes in different sizes and chiralities and argon flows at supersonic velocity using molecular dynamics simulation", Journal of Molecular Liquids, Vol. 339.Evaluation the vibrational behavior of carbon nanotubes in different sizes and chiralities and argon flows at supersonic velocity using molecular dynamics simulation(2021) Li, Yun-Xiang; Hekmatifar, Maboud; Sun, Yu-Liang; Alizadeh, As'ad; Aly, Ayman A.; Toghraie, Davood; Baleanu, Dumitru; Sabetvand, Roozbeh; 56389The carbon nanotubes are among the most robust materials known to main (both in terms of tensile strength and vibrational properties). This strength is derived from the covalent bonds between carbon particles. In this research, carbon nanotubes in different sizes and chiralities and argon flow at supersonic velocity are simulated with molecular dynamics simulations, and their mechanical behavior is investigated. In this study, the stability of atomic structures, the effect of temperature and pressure on carbon nanotubes' vibrational behavior, and the effect of the velocity of argon atoms (ultrasonic flow) on the vibrational behavior of carbon nanotubes were investigated. Numerically, as the temperature and pressure of the simulated samples increase, the numerical value of the oscillation amplitude decreases to 2.12 Å and 2.30 Å, respectively. Also, with increasing temperature and pressure, these structures' frequency value rises to the numerical value of 13.02 ps−1 and 12.59 ps−1, respectively. © 2021 Elsevier B.V.Article Citation Count: Cao, Yan;...et.al. (2022). "Heat transfer improvement between a pair of heater and cooler inside an energy storage by using nano-encapsulated phase change material/water: A numerical modeling", Case Studies in Thermal Engineering, Vol.30.Heat transfer improvement between a pair of heater and cooler inside an energy storage by using nano-encapsulated phase change material/water: A numerical modeling(2022) Cao, Yan; Farouk, Naeim; Ayed, Hamdi; Aly, Ayman A.; Jarad, Fahd; Dahari, Mahidzal; Wae-hayee, Makatar; Saleh, B.; 234808In the present study, the natural convection flow of water with Nano-encapsulated phase change material (NPCM) was simulated inside an insulated chamber, which a pair of pipes were considered as a heater and cooler sources with the boundary condition of uniform temperature. The NPCM's core was made of n-nonadecane with melting temperature of 30.44°C. This core has ability to change the liquid-solid phase to transfer heat between the heater and the cooler sources. Current simulation was steady state and was solved by SIMPLE algorithm based on FVM to investigate the effects of Rayleigh number, volume fraction and location of phase change zone on the convective heat transfer coefficient. Observations showed that, phase change of NPCM occurs at low Rayleigh numbers but had no effect on the convective heat transfer coefficient, but it was directly related to the thermal conductivity of mixture. Moreover, adding volume fraction of NPCM 0.02 into water increased the convective heat transfer coefficient by 10.43%, 19.1% and 18.3% compared to pure water for Rayleigh numbers 102,104,and106, respectively.Article Citation Count: Cao, Yan...et.al. (2022). "Sustainability and financial assessments and double-criteria optimization of a novel power/hydrogen coproduction scheme using solar power and compressed air energy storage cycle", Journal of Energy Storage, Vol.52.Sustainability and financial assessments and double-criteria optimization of a novel power/hydrogen coproduction scheme using solar power and compressed air energy storage cycle(2022) Cao, Yan; Mansir, Ibrahim B.; Mouldi, Abi; Alsharif, Sameer; Aly, Ayman A.; Jarad, Fahd; Batcha, M.F.M.; Bouallegue, B.; 234808The use of solar energy is vital for the future of meeting the energy demand in the world. Different high- or medium-temperature solar-based power plants have been introduced and examined; however, the low exergetic performance of the solar power-to-electricity process is the principal defect. Although using thermal energy storage in such plants leads to continuous production throughout the day, it also increases the rate of exergy destruction. To improve this deficiency, the present study suggests and studies the simultaneous use of thermal energy storage and compressed air energy storage technologies in a high-temperature soar-based coproduction system by considering a multi heat recovery technique. In this regard, the operation of the system is divided into three periods of the day, namely, storing (low-radiation mode), charging (high-radiation mode), and discharging (night times). Hence, a Brayton cycle equipped with a high-temperature solar field using heliostat mirrors is established. In addition, an organic Rankine cycle is employed for heat recovery. In addition, a low-temperature electrolyzer is utilized for hydrogen generation. The ability of the suggested framework is investigated from the exergetic, sustainability, and financial aspects and is optimized by an advanced evolutionary algorithm. The optimum state indicates that the objective functions, i.e., exergetic round trip efficiency and unit cost of the system, are 26.17% and 0.159 $/kWh, respectively. Furthermore, the electricity capacity and hydrogen production rate are obtained at 7023 kW and 627.1 kg/h, respectively. Moreover, its sustainability index and exergoenvironmental impact index are found at 1.66 and 2.30, respectively.