Browsing by Author "Böyükata, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 1Citation - Scopus: 2Effects of Molecular Rovibrational States and Surface Topologies for Molecule-Surface Interaction: Chemisorption Dynamics of D2 Collision With Rigid Ni Surfaces(Sociedade Brasileira de Fisica, 2006) Böyükata, M.; Güvenç, Z.B.A quasiclassical and micro-canonical molecular dynamic simulation techniques have been applied for D2(v, j) + Ni-surface collision systems. Dissociative adsorptions of a D2 molecule on the rigid low index (100), (110) and (111), surfaces of the nickel are investigated to understand the effects of the different surfaces, impact sites and the initial rovibrational states of the molecule on molecule-surface collisions. Interactions between the molecule and the Ni surfaces are mimicked by a LEPS potential. Dissociative chemisorption probabilities of the D2(v, j) Molecule (for the vibrational (v) = 0 and rotational (j) = 0, 1, 3, 10, and for the v = 1, j = 0 states on different impact sites of the surfaces) are presented for the translation energies between 0.001 and 1.0 eV. The probabilities obtained at each collision site have unique behavior for the colliding molecule which is moving along the surface normal direction. It has been observed that at the low collision energies the indirect processes (steering effects) enhance the reactivity on the surfaces. The results are compared to the related studies in the literature.Conference Object Hydrogen Hosting on Aluminum-Doped Boron Clusters: Density Functional Theory(Institute of Physics Publishing, 2009) Böyükata, M.; Güvenç, Z.B.The geometries, stabilities, and energetics of aluminum doped boron clusters, up to 13-atom, and their various hydrogenated complexes have been investigated via the density functional theory (DFT). The geometry optimizations have been carried out by using B3LYP functional and 6-311++G11 basis set. Up to 5-atom clusters arrangements of the atoms, in the most stable structures, have two-dimensional forms. From 6- to 13-atom clusters three-dimensional forms are favored by the lowest energy structures. Hydrogen hosting effects the structures of AlBn clusters. Adding an Al atom to the cage B12 leads structural changes but hydrogenated boron, B12H12 can resist to Al effect. © 2009 IOP Publishing Ltd.
