Browsing by Author "Benkhettou, Nadia"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 3Fractional Differential Equations With Maxima on Time Scale Via Picard Operators(Univ Nis, Fac Sci Math, 2023) Benkhettou, Nadia; Lazreg, Jamal Eddine; Benchohra, Mouffak; Karapinar, Erdal; 19184; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiIn this paper, we prove a result of existence and uniqueness of solutions for the following class of problem of initial value for differential equations with maxima and Caputo's fractional order on the time scales:c increment omega a u(& thetasym;) = zeta(& thetasym;, u(& thetasym;), max sigma E[a,& thetasym;] u(sigma)), & thetasym; E J : = [a,b]T, 0 < omega <1,u(a) = phi,We used the techniques of the Picard and weakly Picard operators to obtain some data dependency on the parameters results.Article Citation - WoS: 6Citation - Scopus: 9Neutral Functional Sequential Differential Equations With Caputo Fractional Derivative on Time Scales(Springernature, 2022) Lazreg, Jamal Eddine; Benkhettou, Nadia; Benchohra, Mouffak; Karapinar, Erdal; 19184; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiIn this paper, we establish the existence and uniqueness of a solution for a class of initial value problems for implicit fractional differential equations with Caputo fractional derivative. The arguments are based upon the Banach contraction principle, the nonlinear alternative of Leray-Schauder type and Krasnoselskii fixed point theorem. As applications, two examples are included to show the applicability of our results.Article Citation - WoS: 19Citation - Scopus: 26Non-Instantaneous Impulsive Fractional Integro-Differential Equations With State-Dependent Delay Br(Univ Maragheh, 2022) Salim, Abdelkrim; Aissani, Khalida; Benchohra, Mouffak; Karapinar, Erdal; Benkhettou, Nadia; 19184; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiThis paper deals with the existence and uniqueness of the mild solution of the fractional integro-differential equations with non-instantaneous impulses and state-dependent delay. Our arguments are based on the fixed point theory. Finally, an example to confirm of the results is provided.
