Browsing by Author "Bezzina, Smain"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: Esfahani, Mohammad Behzad Botlani...et al. (2022). "The effect of sedimentation phenomenon of the additives silver nano particles on water pool boiling heat transfer coefficient: A comprehensive experimental study", Journal of Molecular Liquids, Vol. 345.The effect of sedimentation phenomenon of the additives silver nano particles on water pool boiling heat transfer coefficient: A comprehensive experimental study(2022) Esfahani, Mohammad Behzad Botlani; Mohammad, Sajadi S.; Abu-Hamdeh, Nidal H.; Bezzina, Smain; Abdollahi, Ali; Karimipour, Arash; Ghaemi, Ferial; Baleanu, Dumitru; 56389Nowadays, the increase in the number of nanoparticles in base fluids is considered as one of the most significant causes of change in thermodynamic properties and boiling heat transfer coefficient. Hence, the present study aims to examine the effects of different concentrations of silver nanoparticles on pool boiling inside deionized water. Five different nanoparticle concentrations were tested, namely (0.2, 0.4, 0.6, 0.8, 1) gr/lit. The nanoparticles were synthesized using the two-step method in an aqueous base fluid. A magnetic stirrer was first used to suspend the nanoparticles, and then the stabilization was performed using an ultrasonic stirrer. The average diameter of the nanoparticles is approximately 20 nm, and the stability results indicate that the nanofluids are highly stable. The stability results from the DLS test show that changing the pH of the base fluid by 9 at a concentration of 0.4 gr/lit results in stability of −40 mV. The boiling results of the deionized water were recorded in three steps and were compared to the Rohsenow curve. The variations were very similar to the Rohsenow curve, and the change in the wall superheat and the shifting of the curve can be due to the different conditions of the experimental apparatus. The results indicate that adding silver nanoparticles leads to a decrease in the boiling heat transfer coefficient provided that the roughness parameter is smaller than or equal to unity. Increasing the concentration can reduce the deviation in the boiling heat transfer coefficient at low heat fluxes and increase it at high heat fluxes. Furthermore, boiling heat transfer on sedimentation surfaces was examined in three sedimentation steps. The results show that an increase in sedimentation and a decrease in the roughness parameter cause a reduction in the boiling heat transfer coefficient.Article Citation Count: Alian Moghadam, Reza...et al. (2022). "Water molecules adsorption by a porous carbon matrix in the presence of NaCl impurities using molecular dynamic simulation", Journal of Molecular Liquids, Vol. 347.Water molecules adsorption by a porous carbon matrix in the presence of NaCl impurities using molecular dynamic simulation(2022) Alian Moghadam, Reza; Mohammad, Sajadi S.; Abu-Hamdeh, Nidal H.; Bezzina, Smain; Kalbasi, Rasool; Karimipour, Arash; Ghaemi, Ferial; Baleanu, Dumitru; 56389Today, one of the most important issues in human societies is environmental protection and material recycling. Due to their high surface area and high porosity, porous carbon can be used in different fields of catalytic, recycling, separation, storage, drug delivery, etc. In the present study, the process of adsorption of H2O molecules in the presence of NaCl impurities by a porous carbon matrix has been investigated using the molecular dynamics method. The results show that the process of adsorption of H2O molecules by the porous carbon matrix decreases with increasing impurities in atomic structures. Increasing impurities in atomic structures disrupt the process of adsorption of H2O molecules by the porous carbon matrix. Numerically, by increasing the impurity to 20%, 56% of the H2O molecules were adsorbed on the simulated atomic matrix. Also, the increase in impurities in atomic structures increases the adsorption process of disturbing atoms by the porous carbon matrix. By increasing the impurity to 20%, 9% of the disturbing atoms were adsorbed on the simulated atomic matrix. Finally, by performing this simulation and investigating the effect of impurities on H2O absorption by porous carbon structures, it is expected that an optimal process can be designed for water treatment, which is one of the most important challenges of human societies.