Browsing by Author "Erkal, Necati"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Master Thesis Bir Seyahat Öneri Sisteminde Modeller, Veri Stratejileri ve Hiperparametre Ayarını Keşfetmek(2024) Erkal, Necati; Saran, Ayşe NurdanÖneri sistemlerinin önemi son dönemde giderek artmaktadır. Verilerin karmaşıklığı nedeniyle kullanıcıların beğenebileceği bir öneride bulunmak giderek zorlaşıyor. Özellikle seyehat öneri sistemlerinde bir sonraki şehri önermek önemli ve zor bir görevdir. Çeşitli çalışmalara göre derin öğrenmeyi öneri sistemlerinde kullanmak önerilerin doğruluğunu arttırmaya ve karmaşık verileri ele almaya yardımcı olmaktadır. Bu tez önerilen derin öğrenme destekli seyehat öneri sistemi için yeni mimarileri, veri ve hiperparametre ayarlama tekniklerini ortaya koymaktadır. NVIDIA ekibinin WSDM WebTour 2021 yarışmasında kazanan öneri sistemi bu çalışmada kullanıldı. Kazanan çözümü anlamak için algoritma ve veri seti analiz edilip, çalışmayı geliştirmek için yeni çözümler önerilmiştir.Conference Object Citation - WoS: 0Citation - Scopus: 0Enhancing Trip Suggestions With Deep Learning Based Recommender System(Ieee, 2024) Erkal, Necati; Saran, NurdanThe importance of recommender systems has increased recently. It's due to the complexity of the data. It is becoming increasingly difficult to make recommendations that users might like. This is especially true in trip recommender systems, where recommending the next city is a challenging task. Deep learning has been shown to improve recommendation accuracy and handle complex data in various studies. This study presents new architectures, data, and hyperparameter tuning techniques for a deep learning-based trip recommender system. The study analyzes the algorithm and dataset of the NVIDIA Team's winning solution in the WSDM WebTour 2021 Challenge and proposes enhancements to it.