Browsing by Author "Firouzi, Payam"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: Abidi, Awatef...et al. (2021). "Improve thermal performance of Simulated-Body-Fluid as a solution with an ion concentration close to human blood plasma, by additive Zinc Oxide and its composites: ZnO/Carbon Nanotube and ZnO/Hydroxyapatite", Journal of Molecular Liquids, Vol. 342.Improve thermal performance of Simulated-Body-Fluid as a solution with an ion concentration close to human blood plasma, by additive Zinc Oxide and its composites: ZnO/Carbon Nanotube and ZnO/Hydroxyapatite(2021) Abidi, Awatef; Jokar, Zahra; Allahyari, Seyedmahmoodreza; Kolahi Sadigh, Fereshteh; Mohammad, Sajadi S.; Firouzi, Payam; Baleanu, Dumitru; Ghaemi, Ferial; Karimipour, Arash; 56389Nanofluid is a suspension of Nanoparticles in a basefluid. Typical fluids carry less heat transfer than nanofluids. However, the perception of heat transfer for bio-nanomaterials can help scientists in fields as implant coatings, nano-robotics, etc. In this research, heat transfer of Zinc Oxide (ZnO) in Simulated-Body-Fluid (SBF) was studied. Then, heat transfer of ZnO/Carbon Nanotube and ZnO/Hydroxyapatite in SBF was studied. After that, the results were compared experimentally and numerically. The numerical optimization was done by Artificial Neural Network and Fuzzy system. To make the ZnO/SBF mono nanofluid, first, five volume fractions of 0.2–1.0% were made. Also, ZnO-HA/SBF and ZnO-CNT/SBF hybrid nanofluid samples were made in the same volume fractions, individually. After that, heat transfer was measured at temperatures of 20–50 °C. Also, Artificial Neural Networks with Levenberg-Marquardt and Orthogonal-Distance-Regression algorithms were modeled. Then, Fuzzy system was employed to train the data with the least uncertainty. Results showed that in comparison with ZnO-SBF nanofluid, the effects of adding Hydroxyapatite and Carbon Nanotube are heat transfer enhancement of −16.73% and +17.49% at 1.0 vol% and 50 (°C), individually. Also, computational process can be employed to optimize the “nanofluid's heat transfer measurement” for cost-reduction in experiments. © 2021 Elsevier B.V.Article Citation Count: Shi, Yunhong...et al. (2021). "The Molecular dynamics study of atomic Management and thermal behavior of Al-Water Nanofluid: A two phase unsteady simulation", Journal of Molecular Liquids, Vol. 340.The Molecular dynamics study of atomic Management and thermal behavior of Al-Water Nanofluid: A two phase unsteady simulation(2021) Shi, Yunhong; allahyari, Seyedmahmoodreza; Mohammad, Sajadi S.; Alazwari, Mashhour A.; Firouzi, Payam; Abu-Hamdeh, Nidal H.; Ghaemi, Ferial; Baleanu, Dumitru; Karimipour, Arash; 56389Molecular Dynamic (MD) approach is used to describe the temperature and pressure effects on the Al nanoparticles aggregation process in the aqueous environment of water as the base liquid. For this goal, various physical parameters like total energy, temperature, aggregation time, and total energy of the simulated structures, are reported. The results show that the aggregation process enlarges by the ratio of temperature and pressure. By atomic mobility increasing, the Al nanoparticles collide with each other in a shorter simulation time. Numerically, by temperature increases from 300 K to 350 K, the aggregation time decreases from 1.33 ns to 1.18 ns. Furthermore, aggregation time increases to 1.99 ns by more pressure to 5 bar.