Browsing by Author "Ikram, Muhammad Danish"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation Count: Asjad, Muhammad Imran;...et.al. (2022). "A Nonsingular Fractional Derivative Approach for Heat and Mass Transfer Flow with Hybrid Nanoparticles", Journal of Mathematics, Vol.2022.A Nonsingular Fractional Derivative Approach for Heat and Mass Transfer Flow with Hybrid Nanoparticles(2022) Asjad, Muhammad Imran; Naz, Rabia; Ikram, Muhammad Danish; Iqbal, Azhar; Jarad, Fahd; 234808This paper deals with the study of MHD Brinkman type fluid flow containing hybrid titanium (TiO2) and silver (Ag) nanoparticles with nonlocal noninteger type Atangana-Baleanu (ABC) fractional differential operator. The problem is designed for the convective flow restrained in a microchannel. With the Mittag-Leffler kernel, the conventional governing equations are converted into dimensionless form and then generalised with noninteger order fractional operators. The solutions for temperature and velocity fields obtained via Laplace transform method and expressed in the series form. The effect of related parameters is dignified graphically with the help of Mathcad and presented in the graphical section. Finally, the results show that the AB fractional operator exhibited improved memory effect as compared to CF fractional operator. Furthermore, due to increasing the values volume fractional temperature can be enhanced and velocity decreases. In comparison between nanoparticles for different types of based fluid, velocity and temperature of water based (TiO2) and silver (Ag) is higher than other base fluids.Article Citation Count: Ikram, Muhammad Danish...et al. (2021). "Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates", Alexandria Engineering Journal, Vol. 60, No. 4, pp. 3593-3604.Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates(2021) Ikram, Muhammad Danish; Asjad, Muhammad Imran; Akgül, Ali; Baleanu, Dumitru; 56389In this paper, it has been discussed the fractional model of Brinkman type fluid (BTF) holding hybrid nanoparticles. Titanium dioxide (TiO2) and silver (Ag) nanoparticles were liquefied in water (H2O) (base fluid) to make a hybrid nanofluid. The magnetohydrodynamic (MHD) free convection flow of the nanofluid (Ag - TiO2 - H2O)was measured in a bounded microchannel. The BTF model was generalized using constant proportional Caputo fractional operator (CPC) with effective thermophysical properties. By introducing dimensionless variables, the governing equations of the model were solved by Laplace transform method. The testified outcomes are stated as M-function. The impact of associated parameters were measured graphically using Mathcad and offered a comparison with the existing results from the literature. The effect of related parameters was physically discussed. It was concluded that constant proportional Caputo fractional operator (CPC) showed better memory effect than Caputo-Fabrizio fractional operator (CF) (Saqib et al., 2020). (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).Article Citation Count: Asjad, Muhammad Imran...et.al. (2022). "Unsteady Casson fluid flow over a vertical surface with fractional bioconvection", AIMS Mathematics, Vol.7, No.5, pp.8112-8126.Unsteady Casson fluid flow over a vertical surface with fractional bioconvection(2022) Asjad, Muhammad Imran; Butt, Muhammad Haris; Sadiq, Muhammad Armaghan; Ikram, Muhammad Danish; Jarad, Fahd; 234808This paper deals with unsteady flow of fractional Casson fluid in the existence of bioconvection. The governing equations are modeled with fractional derivative which is transformed into dimensionless form by using dimensionless variables. The analytical solution is attained by applying Laplace transform technique. Some graphs are made for involved parameters. As a result, it is found that temperature, bioconvection are maximum away from the plate for large time and vice versa and showing dual behavior in their boundary layers respectively. Further recent literature is recovered from the present results and obtained good agreement.