Browsing by Author "Kamilaris, Andreas"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 2A Discovery and Analysis Engine for Semantic Web(Assoc Computing Machinery, 2018) Kamilaris, Andreas; Dogdu, Erdogan; Kodaz, Halife; Uysal, Elif; Aras, Riza Emre; Yumusak, SemihThe Semantic Web promotes common data formats and exchange protocols on the web towards better interoperability among systems and machines. Although Semantic Web technologies are being used to semantically annotate data and resources for easier reuse, the ad hoc discovery of these data sources remains an open issue. Popular Semantic Web endpoint repositories such as SPARQLES, Linking Open Data Project (LOD Cloud), and LODStats do not include recently published datasets and are not updated frequently by the publishers. Hence, there is a need for a web-based dynamic search engine that discovers these endpoints and datasets at frequent intervals. To address this need, a novel web meta-crawling method is proposed for discovering Linked Data sources on the Web. We implemented the method in a prototype system named SPARQL Endpoints Discovery (SpEnD). In this paper, we describe the design and implementation of SpEnD, together with an analysis and evaluation of its operation, in comparison to the aforementioned static endpoint repositories in terms of time performance, availability, and size. Findings indicate that SpEnD outperforms existing Linked Data resource discovery methods.Conference Object Citation - WoS: 16Citation - Scopus: 21Spend: Linked Data Sparql Endpoints Discovery Using Search Engines(Ieice-inst Electronics information Communication Engineers, 2017) Yumusak, Semih; Dogdu, Erdogan; Kodaz, Halife; Kamilaris, Andreas; Vandenbussche, Pierre-YvesLinked data endpoints are online query gateways to semantically annotated linked data sources. In order to query these data sources, SPARQL query language is used as a standard. Although a linked data endpoint (i.e. SPARQL endpoint) is a basic Web service, it provides a platform for federated online querying and data linking methods. For linked data consumers, SPARQL endpoint availability and discovery are crucial for live querying and semantic information retrieval. Current studies show that availability of linked datasets is very low, while the locations of linked data endpoints change frequently. There are linked data respsitories that collect and list the available linked data endpoints or resources. It is observed that around half of the endpoints listed in existing repositories are not accessible (temporarily or permanently offline). These endpoint URLs are shared through repository websites, such as Datahub. io, however, they are weakly maintained and revised only by their publishers. In this study, a novel metacrawling method is proposed for discovering and monitoring linked data sources on the Web. We implemented the method in a prototype system, named SPARQL Endpoints Discovery (SpEnD). SpEnD starts with a "search keyword" discovery process for finding relevant keywords for the linked data domain and specifically SPARQL endpoints. Then, the collected search keywords are utilized to find linked data sources via popular search engines (Google, Bing, Yahoo, Yandex). By using this method, most of the currently listed SPARQL endpoints in existing endpoint repositories, as well as a significant number of new SPARQL endpoints, have been discovered. We analyze our findings in comparison to Datahub collection in detail.

