Browsing by Author "Khan, Umair"
Now showing 1 - 19 of 19
- Results Per Page
- Sort Options
Article Citation Count: Khan, Umair;...et.al. (2022). "An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces", Waves In Random And Complex Media.An exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid over a stretching sheet subject to Lorentz forces(2022) Khan, Umair; Mebarek-Oudina, Fateh; Zaib, Aurang; Ishak, Anuar; Abu Bakar, Sakhinah; Sherif, El-Sayed M.; Baleanu, Dumitru; 56389The concept of a hybrid nanofluid has piqued the interest of numerous researchers due to its potential for increased thermal properties, which results in high transfer rates. Hybrid nanofluids are used in heat transport systems such as electronic cooling, and applications in biomedical and pharmaceutical relief. Thus, the present paper inspects the impact of Lorentz forces on the Casson fluid flow of water-based Fe3O4-MWCNT hybrid nanofluid induced by dust particles from a stretching sheet. The leading PDEs are changed into ODEs by employing similarity variables and then achieving an exact solution for these transformed ODEs. The impacts of distinct physical constraints including fluid interaction particle parameter, Casson parameter, and magnetic parameter on the dust velocity and fluid velocity for normal nanofluid (Fe3O4/H2O) and hybrid nanofluid (Fe3O4-MWCNT/ H2O) are addressed in detail. The present analytic solution shows a strong correlation with earlier published numerical studies in limited cases.Article Citation Count: Khan, U...et al. (2020). "Comparative Investigation On Mhd Nonlinear Radiative Flow Through A Moving Thin Needle Comprising Two Hybridized Aa7075 and Aa7072 Alloys Nanomaterials Through Binary Chemical Reaction With Activation Energy",Journal of Materials Research and Technology.Comparative Investigation On Mhd Nonlinear Radiative Flow Through A Moving Thin Needle Comprising Two Hybridized Aa7075 and Aa7072 Alloys Nanomaterials Through Binary Chemical Reaction With Activation Energy(Elsevier Editora LTD., 2020) Khan, Umair; Zaib, Aurang; Khan, Ilyas; Baleanu, Dumitru; Sherif, El-Sayed M.; 56389The intention of the current study is analyzing the significance of nonlinear radiation on magnetic field involving hybrid AA7075 and AA7072 alloys nanomaterials through thin needle. The scenario has been modeled mathematically by captivating the binary chemical reaction and activation energy. Similarity variables are deployed to change the system of PDE's into nonlinear ODE's and subsequently solved these equations through bvp4c solver. Influence of distinct material parameters on the velocity, concentration and temperature along with the correlated engineering features quantities such as drag force, heat and mass transfer rate are obtained and demonstrated via plots. The velocity of the liquid is declining function of magnetic field, while the temperature augments. In addition, obtained numerical results are contrasted through the available literature and appeared to be in admirable harmony. The current investigation shows the important features in solar hybrid alloy nanomaterials systems and aircraft technology.Article Citation Count: Khan, Umair;...et.al. (2022). "Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation", AIMS Mathematics, Vol.7, No.4, pp.6489-6515.Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation(2022) Khan, Umair; Zaib, Aurang; Bakar, Sakhinah Abu; Ishak, Anuar; Baleanu, Dumitru; Sherif, El-Sayed M.; 56389Recent nanotechnology advancements have created a remarkable platform for the development of a better performance of ultrahigh coolant acknowledged as nanofluid for numerous industrial and engineering technologies. The current study aims to examine the boundary-layer cross-flow of Williamson fluid through a rotational stagnation point towards either a shrinking or stretching permeable wall incorporated by a hybrid nanofluid. The shape factors along with the radiation effect are also taken into account. The contained boundary layers are the type of stream-wise by shrinking/stretching process along with the sheet. Employing the suitable transformations, the partial differential equations (PDEs) are transmuted to similarity (ordinary) differential equations (ODEs). The transmuted system of ODEs is worked out by using a built-in package bvp4c in MATLAB for distinct values of pertaining parameters. Dual (first and second branch) outcomes are found for the shrinking surface. The results suggest that the inclusion of hybrid particles uplifts the drag force as well as the heat transfer in both solutions. In addition, the Weissenberg number accelerates the separation. Moreover, the effect of suction permits the friction factor and heat transfer to improve significantly at the porous shrinking/stretching sheet of hybrid nanofluid.Article Citation Count: Khan, Umair...et al. (2020). "Enhanced Heat Transfer in Moderately Ionized Liquid Due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis", Crystals, Vol. 10, No. 2.Enhanced Heat Transfer in Moderately Ionized Liquid Due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis(2020) Khan, Umair; Zaib, A.; Khan, Ilyas; Baleanu, Dumitru; Nisar, Kottakkaran Sooppy; 56389This study considers ethylene-glycol as a moderate ionized regular liquid whose rheological behavior can be analyzed through the relations of the Carreau stress-strain tensor. Hybrid nanoliquids are potent liquids that give better performance for heat transfer and the properties of thermo physical than regular heat transfer liquids (water, ethylene glycol, and oil) and nanoliquids by single nanomaterials. Here, a type of hybrid nanoliquid involving silicon oxide (SiO2) and Molybdenum disulfide (MoS2) nanoparticles with ethylene glycol as a base liquid are considered. In addition, the impact of nonlinear radiation along with Lorentz force is invoked. Similarity variables are utilized to acquire the numerical findings and their solutions for transmuting ordinary differential equations (ODEs). Using bvp4c from MATLAB, we can obtain these quantitative and numerical results of the converted nonlinear equations. The impacts of the pertinent constraints on the temperature distribution, velocity, Nusselt number, and skin friction are estimated. The outcomes indicate that the double-edged methods for the results originate from the precise values of the permeable parameters. Further, the critical values (S-c = 1.9699, 2.0700 and 2.2370) are enhanced due to the influence of the local Weissenberg number. This implies that the increasing value of the local Weissenberg number accelerate the boundary layer separation. Furthermore, a stability investigation is performed and confirms that the first solution is a physically reliable solution.Article Citation Count: Nisar, Kottakkaran Sooppy...et al. (2020). "Exploration of Aluminum and Titanium Alloys in the Stream-Wise and Secondary Flow Directions Comprising the Significant Impacts of Magnetohydrodynamic and Hybrid Nanofluid", Crystals, Vol. 10, No. 8.Exploration of Aluminum and Titanium Alloys in the Stream-Wise and Secondary Flow Directions Comprising the Significant Impacts of Magnetohydrodynamic and Hybrid Nanofluid(2020) Nisar, Kottakkaran Sooppy; Khan, Umair; Zaib, Aurang; Khan, Ilyas; Baleanu, Dumitru; 56389This exploration examines the nonlinear effect of radiation on magnet flow consisting of hybrid alloy nanoparticles in the way of stream-wise and cross flow. Many experimental, as well as theoretical explorations, demonstrated that the thermal conductivity of the regular liquid increases by up to 15 to 40% when nanomaterials are mixed with the regular liquid. This change of the thermal conductivity of the nanoliquid depends on the various characteristics of the mixed nanomaterials like the size of the nanoparticles, the agglomeration of the particles, the volume fraction, etc. Researchers have used numerous nanoparticles. However, we selected water-based aluminum alloy (AA7075) and titanium alloy (Ti6Al4V) hybrid nanomaterials. This condition was mathematically modeled by capturing the Soret and Dufour impacts. The similarity method was exercised to change the partial differential equations (PDEs) into nonlinear ordinary differential equations (ODEs). Such nonlinear ODEs were worked out numerically via the bvp4c solver. The influences of varying the parameters on the concentration, temperature, and velocity area and the accompanying engineering quantities such as friction factor, mass, and heat transport rate were obtained and discussed using graphs. The velocity declines owing to nanoparticle volume fraction in the stream-wise and cross flow directions in the first result and augment in the second result, while the temperature and concentration upsurge in the first and second results. In addition, the Nusselt number augments due to the Soret number and declines due to the Dufour number in both results, whereas the Sherwood number uplifts due to the Dufour number and shrinks due to the Soret number in both results.Article Citation Count: Khan, Umair...et al. (2020). "Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction", Heliyon, Vol. 6, No. 7.Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction(2020) Khan, Umair; Zaib, A.; Baleanu, Dumitru; Sheikholeslami, M.; Wakif, Abderrahim; 56389The mathematical modeling and numerical simulation are conferred to offer the novel perception of binary chemical reaction with an activation energy aspect on magneto flow comprising Cross liquid inspired by a moving wedge. The influences of Soret and Dufour are also presented. The similarity procedure is utilized to modify the leading PDEs into a non-linear system of ODEs and then analyzed through a significant technique namely bvp4c based on the collocation method. The impacts of varying distinct parameters under the temperature and the velocity distribution are explored and discussed with the support of the graphs. The outcomes indicate that the multiple results are attained for a specific amount of shrinking/stretching constraint. Furthermore, the Weissenberg number reduces the skin factor and speed up the heat and mass transport rate in the lower and upper branch solutions. Also, an assessment of current results with earlier published literature is made in the limiting case.Article Citation Count: Khan, Umair...et al. (2020). "Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects", Case Studies in Thermal Engineering, Vol. 21.Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects(2020) Khan, Umair; Shafiq, Anum; Zaib, A.; Baleanu, Dumitru; 56389The analysis explores the significance of thermal radiation on mixed convective boundary layer flow of a hybrid (SiO2-MoS2/H2O) nanofluid. The permeability of the stretched/shrinking surface is allowing the wall fluid suction, whereas radiation phenomenon is also incorporated in the presence of thermal convection. The combination of SiO2 nanoparticles and MoS2/H2O nanofluid are being modeled using the analytical nanofluid hybrid model in the present work. The hybrid nanofluid governing equations are transformed utilizing the similarity transformation technique. The transformed boundary value problem, then solved by bvp4c technique in MATLAB software. For specified values of various parameters the numerical results are obtained. The findings indicate dual solutions, up to some amount of stretching/shrinking parameter. The suction parameter decelerates the friction factor and accelerates the heat transfer rate. Also, the tem-perature augments due to the radiation and nanoparticles volume fraction in both solutions, whereas the velocity declines due to nanoparticles volume fraction.Article Citation Count: Khan, Umair...et al. (2020). "Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux", Journal of Materials Research and Technology-JMR&T, Vol. 9, No. 3, pp. 3699-3709.Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux(2020) Khan, Umair; Zaib, A.; Shah, Zahir; Baleanu, Dumitru; Sherif, El-Sayed M; 56389In the recent past, many claims on thermo-physical characteristics of nanofluids in different flow regimes, especially laminar flow regime have been comprised in literature. Keeping these in mind, the focus of the current review is to study the physical aspects of laminar two-dimensional flow of magnetic-Sisko fluid where nanoparticles are present. In addition, the mass and the heat transfer features through convective boundary and zero mass flux conditions have been examined. This paper is probably the first contribution concerning the multiple solutions for axi-symmetric flow of Sisko nanofluids owing to a radially shrinking surface. The physical situation is modelled with the aid of mass, momentum and energy conservation equations. This investigation employs the non-dimensional variables to transmute the conserving PDE's to a system of ODE's. In the numerical study, a collocated numerical technique, namely, bvp4c based on finite difference technique is utilized to obtain the results of the aforementioned problem. This scheme allows us to acquire the multiple solutions (lower and upper) for various specific values of shrinking and suction constraint. The outcomes from this review exhibit that the suction parameter accelerates the local skin friction in the phenomenon of the first solution while a repeal trend is watched for the second solution. It is further visualized that the presence of a high magnetic field shrinks the liquid velocity. In addition, the Sisko constraint decelerates the skin friction and the Nusselt number in the first solution and accelerated in the second solution. Finally, the results of a current study established a superb correlation with existing data for selected parameter values.Article Citation Count: Khan, Umair...et al. (2020). "Insights into the Stability of Mixed Convective Darcy-Forchheimer Flows of Cross Liquids from a Vertical Plate with Consideration of the Significant Impact of Velocity and Thermal Slip Conditions", Mathematics, Vol. 8, No. 1.Insights into the Stability of Mixed Convective Darcy-Forchheimer Flows of Cross Liquids from a Vertical Plate with Consideration of the Significant Impact of Velocity and Thermal Slip Conditions(2020) Khan, Umair; Zaib, Aurang; Khan, Ilyas; Nisar, Kottakkaran Sooppy; Baleanu, Dumitru; 56389This paper reflects the effects of velocity and thermal slip conditions on the stagnation-point mixed convective flow of Cross liquid moving over a vertical plate entrenched in a Darcy-Forchheimer porous medium. A Cross liquid is a type of non-Newtonian liquid whose viscosity depends on the shear rate. The leading partial differential equations (PDEs) are altered to nonlinear ordinary differential equations (ODEs) via feasible similarity transformations. These transmuted equations are computed numerically through the bvp4c solver. The authority of sundry parameters on the temperature and velocity distributions is examined graphically. In addition, the characteristics of heat transfer are analyzed in the presence of the impact of drag forces. The outcomes reveal that the permeability parameter decelerates the drag forces and declines the rate of heat transfer in both forms of solutions. Moreover, it is found that the drag forces decline with the growing value of the Weissenberg parameter in the upper branch solutions, while a reverse trend is revealed in the lower branch solutions. However, the rate of heat transfer shows a diminishing behavior with an increasing value of the Weissenberg parameter.Article Citation Count: Khan, Umair...et al. (2020). "MHD radiative blood flow embracing gold particles via a slippery sheet through an erratic heat sink/source", Mathematics, Vol. 8, No. 9.MHD radiative blood flow embracing gold particles via a slippery sheet through an erratic heat sink/source(2020) Khan, Umair; Shafiq, Anum; Zaib, Aurang; Sherif, El-Sayed M.; Baleanu, Dumitru; 56389Cancer remains one of the world's leading healthcare issues, and attempts continue not only to find new medicines but also to find better ways of distributing medications. It is harmful and lethal to most of its patients. The need to selectively deliver cytotoxic agents to cancer cells, to enhance protection and efficacy, has prompted the implementation of nanotechnology in medicine. The latest findings have found that gold nanomaterials can heal and conquer it because the material is studied such as gold (atomic number 79) which produces a large amount of heat and contribute to the therapy of malignant tumors. The purpose of the present study is to research the consequence of heat transport through blood flow (Casson model) that contains gold particles in a slippery shrinking/stretching curved surface. The mathematical modeling of Casson nanofluid containing gold nanomaterials towards the slippery curved shrinking/stretching surface is simplified by utilizing suitable transformation. Numerical dual solutions for the temperature and velocity fields are calculated by using bvp4c methodology in MATLAB. Impacts of related parameters are investigated in the temperature and velocity distribution. The results indicate that the suction parameter accelerates the velocity in the upper branch solution and decelerates it in the lower branch solution, while the temperature diminishes in both solutions. In addition, the Casson parameter shrinks the thickness of the velocity boundary-layer owing to rapid enhancement in the plastic dynamics' viscosity. Moreover, the nanoparticle volume fraction accelerates the viscosity of blood as well as the thermal conductivity. Thus, findings suggested that gold nanomaterials are useful for drug moving and delivery mechanisms since the velocity boundary is regulated by the volume fraction parameter. Gold nanomaterials also raise the temperature field, so that cancer cells can be destroyed. © 2020 by the authors.Article Citation Count: Khan, Umair...et al. (2020). "Mixed convective radiative flow through a slender revolution bodies containing molybdenum-disulfide graphene oxide along with generalized hybrid nanoparticles in porous media", Crystals, Vol. 10, No. 9, pp. 1-18.Mixed convective radiative flow through a slender revolution bodies containing molybdenum-disulfide graphene oxide along with generalized hybrid nanoparticles in porous media(2020) Khan, Umair; Zaib, Aurang; Sheikholeslami, Mohsen; Wakif, Abderrahim; Baleanu, Dumitru; 56389The current framework tackles the buoyancy flow via a slender revolution bodies comprising Molybdenum-Disulfide Graphene Oxide generalized hybrid nanofluid embedded in a porous medium. The impact of radiation is also provoked. The outcomes are presented in this analysis to examine the behavior of hybrid nanofluid flow (HNANF) through the cone, the paraboloid, and the cylinder-shaped bodies. The opposing flow (OPPF) as well as the assisting flow (ASSF) is discussed. The leading flow equations of generalized hybrid nanoliquid are worked out numerically by utilizing bvp4c solver. This sort of the problem may meet in the automatic industries connected to geothermal and geophysical applications where the sheet heat transport occurs. The impacts of engaging controlled parameters of the transmuted system on the drag force and the velocity profile are presented through the graphs and tables. The achieved outcomes suggest that the velocity upsurges due to the dimensionless radius of the slender body parameter in case of the assisting flow and declines in the opposing flow. Additionally, an increment is observed owing to the shaped bodies as well as in type A nanofluid and type B hybrid nanofluid. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Article Citation Count: Khan, Umair...et al. (2020). "Numerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory", Alexandria Engineering Journal, Vol. 59, No. 6, pp. 4851-4864.Numerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory(2020) Khan, Umair; Shafiq, Anum; Zaib, A.; Wakif, Abderrahim; Baleanu, Dumitru; 56389In this study, the feature of stagnant Sutterby nanofluid towards a wedge surface is analyzed under the impact of a variable external magnetic field. Instead of the traditional Fourier law, the realistic Cattaneo-Christov principle is incorporated in the energy equation to scrutinize the heat flow pattern by utilizing the non-homogeneous two-phase nanofluid model. The constitutive flow rules are transfigured into a nonlinear differential system via feasible mathematical alterations. Methodologically, the bvp4c numerical procedure is employed properly to derive accurate numerical solutions for the present boundary flow problem. By varying the values of the involved parameters of the governing equations, the behaviors of temperature, velocity, and concentration profiles are described graphically and interpreted thoroughly. In this attempt, the major finding is that the magnetic field accelerates the motion and declines the temperature and concentration fields in the performance of suction and injection. Moreover, the nanofluid parameters upsurge the heat transfer mechanism and decline the mass transport and the effect of drag forces in both situations of wall-through flow (i.e., suction and injection effects). Furthermore, the nanofluid concentration profile decays due to the strengthening in the thermophoresis phenomenon. As a useful application, the magnetic function trend along with the thermophoresis diffusion on the nanofluid flow field may be exerted broadly in the field of aerosol technology. © 2020 Faculty of Engineering, Alexandria UniversityArticle Citation Count: Nisar, Kottakkaran Sooppy...et al. (2020). "Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux", Frontiers in Chemistry, Vol. 8.Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux(2020) Nisar, Kottakkaran Sooppy; Khan, Umair; Zaib, A.; Khan, Ilyas; Baleanu, Dumitru; 56389Ferroliquids are an example of a colloidal suspension of magnetic nanomaterials and regular liquids. These fluids have numerous applications in medical science such as cell separation, targeting of drugs, magnetic resonance imaging, etc. The hybrid nanofluid is composed by scattering the magnetic nanomaterial of more than one type nanoparticles suspended into the base fluid. It has different scientific applications such as heat dissipation, dynamic sealing, damping, etc. Owing to the vast ferrofluid applications, the time-dependent squeezed flow of hybrid ferroliquids under the impact of non-linear radiation and mixed convection within two disks was explored for the first time in this analysis. Here, the cobalt and magnetite ferrofluids are considered and scattered in a 50%:50% mixture of water–EG (ethylene glycol). The similarity technique is used to reduce the leading PDEs into coupled non-linear ODEs. The transmuted equations together with recommended boundary restrictions are numerically solved via Matlab solver bvp4c. The opposing and assisting flows are considered. The impacts of an emerging parameter on fluid velocity and temperature field of hybrid ferroliquids are examined through the different graphical aids. The results showed that the opposite trend is scrutinized due to the magnetic influence on the temperature and velocity in the case of assisting and opposing flows. The velocity augments due to the volume fraction of nanoparticles in the assisting flow and declines in the opposing flow, while the opposite direction is noticed in the temperature field. © Copyright © 2020 Nisar, Khan, Zaib, Khan and Baleanu.Article Citation Count: Nisar, Kottakkaran Sooppy;...et.al. (2020). "Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux", Frontiers in Chemistry, Vol.8.Numerical Simulation of Mixed Convection Squeezing Flow of a Hybrid Nanofluid Containing Magnetized Ferroparticles in 50%:50% of Ethylene Glycol–Water Mixture Base Fluids Between Two Disks With the Presence of a Non-linear Thermal Radiation Heat Flux(2020) Nisar, Kottakkaran Sooppy; Khan, Umair; Zaib, A.; Khan, Ilyas; Baleanu, Dumitru; 56389Ferroliquids are an example of a colloidal suspension of magnetic nanomaterials and regular liquids. These fluids have numerous applications in medical science such as cell separation, targeting of drugs, magnetic resonance imaging, etc. The hybrid nanofluid is composed by scattering the magnetic nanomaterial of more than one type nanoparticles suspended into the base fluid. It has different scientific applications such as heat dissipation, dynamic sealing, damping, etc. Owing to the vast ferrofluid applications, the time-dependent squeezed flow of hybrid ferroliquids under the impact of non-linear radiation and mixed convection within two disks was explored for the first time in this analysis. Here, the cobalt and magnetite ferrofluids are considered and scattered in a 50%:50% mixture of water–EG (ethylene glycol). The similarity technique is used to reduce the leading PDEs into coupled non-linear ODEs. The transmuted equations together with recommended boundary restrictions are numerically solved via Matlab solver bvp4c. The opposing and assisting flows are considered. The impacts of an emerging parameter on fluid velocity and temperature field of hybrid ferroliquids are examined through the different graphical aids. The results showed that the opposite trend is scrutinized due to the magnetic influence on the temperature and velocity in the case of assisting and opposing flows. The velocity augments due to the volume fraction of nanoparticles in the assisting flow and declines in the opposing flow, while the opposite direction is noticed in the temperature field.Article Citation Count: Khan, Umair...et al. (2020). "On the Cattaneo-Christov Heat Flux Model and OHAM Analysis for Three Different Types of Nanofluids", Applied Sciences-Basel, Vol. 10, No. 3.On the Cattaneo-Christov Heat Flux Model and OHAM Analysis for Three Different Types of Nanofluids(2020) Khan, Umair; Ahmad, Shafiq; Hayyat, Arsalan; Khan, Ilyas; Nisar, Kottakkaran Sooppy; Baleanu, Dumitru; 56389In this article, the boundary layer flow of a viscous nanofluid induced by an exponentially stretching surface embedded in a permeable medium with the Cattaneo-Christov heat flux model (CCHFM) is scrutinized. We took three distinct kinds of nanoparticles, such as alumina (Al2O3), titania (TiO2) and copper (Cu) with pure water as the base fluid. The features of the heat transfer mechanism, as well as the influence of the relaxation parameter on the present viscous nanofluid flow are discussed here thoroughly. The thermal stratification is taken in this phenomenon. First of all, the problem is simplified mathematically by utilizing feasible similarity transformations and then solved analytically through the OHAM (optimal homotopy analysis method) to get accurate analytical solutions. The change in temperature distribution and axial velocity for the selected values of the specific parameters has been graphically portrayed in figures. An important fact is observed when the thermal relaxation parameter (TRP) is increased progressively. Graphically, it is found that an intensification in this parameter results in the exhaustion of the fluid temperature together with an enhancement in the heat transfer rate. A comparative discussion is also done over the Fourier's law and Cattaneo-Christov model of heat.Article Citation Count: Alghamdi, Metib...at all (2021). "Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface", Case Studies in Thermal Engineering, Vol. 28.Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface(2021) Alghamdi, Metib; Wakif, A.; Thumma, Thirupathi; Khan, Umair; Baleanu, Dumitru; Rasool, Ghulam; 56389The dynamical behavior and thermal transportation feature of an enhanced MHD convective Casson bi-phasic flows of sodium alginate-based nanofluids are examined numerically in a Darcy-Brinkman medium bounded by a vertical elongating slender concave-shaped surface. The mathematical framework of the present flow model is developed properly by adopting the single-phase approach, whose solid phase is selected to be metallic or metallic oxide nanoparticles. Besides, the influence of thermal radiation is taken into consideration in the presence of an internal variable heat generation. A set of feasible similarity transformations are applied for the conversion of the governing PDEs into a nonlinear differential structure of coupled ODEs. An advanced differential quadrature algorithm is employed herein to acquire accurate numerical solutions for momentum and energy equations. For validating the obtained numerical findings, extensive comparison tests are carried out in this sense. The results of the current exploration show that the wall heat transfer rate and the frictional effect are strengthened with the loading of nanoparticles and weakened with the mounting values of the heat source parameters. However, the magnetic parameter exhibits a reverse trend concerning those engineering quantities. Statistically, the slope linear regression method (SLRM) proves that the aurum-sodium alginate nanofluid presents the higher frictional factor, whereas the copper oxide-sodium alginate is the more thermal performant nanofluid.Article Citation Count: Zaydan, M...et al. (2020). "Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno's nanofluid model", CASE STUDIES IN THERMAL ENGINEERING, Vol. 22.Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: A revised Buongiorno's nanofluid model(2020) Zaydan, M.; Wakif, A.; Animasaun, I. L.; Khan, Umair; Baleanu, Dumitru; Sehaqui, R.; 56389In this numerical examination, the thermal stability of an electrically conducting nanofluid is deliberated comprehensively by considering the presence of an externally applied magnetic field along with an imposed vertical throughflow. Additionally, this thin nanofluidic layer is supposed to have a Newtonian rheological behavior, heated from below, and confined horizontally between two permeable rigid plates of infinite extension. Herein, the governing conservation equations are strengthened realistically by the revised version of the Buongiorno's mathematical model, in which the vertical component of the mass flux of solid nanoparticles is presumed to vanish entirely at the horizontal permeable boundaries. After specifying the basic state of the present nanofluid problem, the linear stability theory and normal mode analysis technique are applied properly to obtain the principal stability equations. Finally, the eigenvalue problem derived analytically is tackled thereafter numerically via the Chebyshev-Gauss-Lobatto Spectral Method (CGLSM), in which the thermal Rayleigh number is chosen as an eigenvalue. As a main result, it was demonstrated that the throughflow effect exhibits a dual behavior on the complex dynamics of the system. However, the excreted magnetic field has always a stabilizing impact on the nanofluidic medium.Article Citation Count: Lund, Liaquat Ali...et al. (2020). "Stability Analysis and Dual Solutions of Micropolar Nanofluid over the Inclined Stretching/Shrinking Surface with Convective Boundary Condition", Symmetry-Basel, Vol. 12, No. 1.Stability Analysis and Dual Solutions of Micropolar Nanofluid over the Inclined Stretching/Shrinking Surface with Convective Boundary Condition(2020) Lund, Liaquat Ali; Omar, Zurni; Khan, Umair; Khan, Ilyas; Baleanu, Dumitru; Nisar, Kottakkaran Sooppy; 56389The present study accentuates the heat transfer characteristics of a convective condition of micropolar nanofluid on a permeable shrinking/stretching inclined surface. Brownian and thermophoresis effects are also involved to incorporate energy and concentration equations. Moreover, linear similarity transformation has been used to transform the system of governing partial differential equations (PDEs) into a set of nonlinear ordinary differential equations (ODEs). The numerical comparison has been done with the previously published results and found in good agreement graphically and tabular form by using the shooting method in MAPLE software. Dual solutions have been found in the specific range of shrinking/stretching surface parameters and the mass suction parameter for the opposing flow case. Moreover, the skin friction coefficient, the heat transfer coefficient, the couple stress coefficient, and the concentration transfer rate decelerate in both solutions against the mass suction parameter for the augmentation of the micropolar parameter respectively. The first (second) solution is the stable (unstable) solution and can (not) be considered as a real solution as the values of the smallest eigenvalues are positive (negative).Article Citation Count: Khan, Umair;...et.al. (2023). "Stability Scrutinization of Agrawal Axisymmetric Flow of Nanofluid through a Permeable Moving Disk Due to Renewable Solar Radiation with Smoluchowski Temperature and Maxwell Velocity Slip Boundary Conditions", CMES - Computer Modeling in Engineering and Sciences, Vol.134, No.2, pp.1371-1392.Stability Scrutinization of Agrawal Axisymmetric Flow of Nanofluid through a Permeable Moving Disk Due to Renewable Solar Radiation with Smoluchowski Temperature and Maxwell Velocity Slip Boundary Conditions(2023) Khan, Umair; Zaib, Aurang; Ishak, Anuar; Waini, Iskandar; Sherif, El-Sayed M.; Baleanu, Dumitru; 56389The utilization of solar energy is essential to all living things since the beginning of time. In addition to being a constant source of energy, solar energy (SE) can also be used to generate heat and electricity. Recent technology enables to convert the solar energy into electricity by using thermal solar heat. Solar energy is perhaps the most easily accessible and plentiful source of sustainable energy. Copper-based nanofluid has been considered as a method to improve solar collector performance by absorbing incoming solar energy directly. The goal of this research is to explore theoretically the Agrawal axisymmetric flow induced by Cu-water nanofluid over a moving permeable disk caused by solar energy. Moreover, the impacts of Maxwell velocity and Smoluchowski temperature slip are incorporated to discuss the fine points of nanofluid flow and characteristics of heat transfer. The primary partial differential equations are transformed to similarity equations by employing similarity variables and then utilizing bvp4c to resolve the set of equations numerically. The current numerical approach can produce double solutions by providing suitable initial guesses. In addition, the results revealed that the impact of solar collector efficiency enhances significantly due to nanoparticle volume fraction. The suction parameter delays the boundary layer separation. Moreover, stability analysis is performed and is found that the upper solution is stable and physically trustworthy while the lower one is unstable.