Browsing by Author "Malik, Muhammad Rafiq"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: Shahid, Naveed...et al. (2020). "Novel numerical analysis for nonlinear advection-reaction-diffusion systems", Open Physics, Vol. 18, No. 1, pp. 112-125.Novel numerical analysis for nonlinear advection-reaction-diffusion systems(2020) Shahid, Naveed; Ahmed, Nauman; Baleanu, Dumitru; Alshomrani, Ali Saleh; Iqbal, Muhammad Sajid; Rehman, Muhammad Aziz-u; Shaikh, Tahira Sumbal; Malik, Muhammad Rafiq; 56389In this article, a numerical model for a Brusselator advection-reaction-diffusion (BARD) system by using an elegant numerical scheme is developed. The consistency and stability of the proposed scheme is demonstrated. Positivity preserving property of the proposed scheme is also verified. The designed scheme is compared with the two well-known existing classical schemes to validate the certain physical properties of the continuous system. A test problem is also furnished for simulations to support our claim. Prior to computations, the existence and uniqueness of solutions for more generic problems is investigated. In the underlying system, the nonlinearities depend not only on the desired solution but also on the advection term that reflects the pivotal importance of the study.Article Citation Count: Ahmed, Nauman...et al. (2020). "Positive explicit and implicit computational techniques for reaction-diffusion epidemic model of dengue disease dynamics", Advances in Difference Equations, Vol. 2020, No. 1.Positive explicit and implicit computational techniques for reaction-diffusion epidemic model of dengue disease dynamics(2020) Ahmed, Nauman; Malik, Muhammad Rafiq; Baleanu, Dumitru; Alshomrani, Ali Saleh; Rehman, Muhammad Aziz-ur; 56389The aim of this work is to develop a novel explicit unconditionally positivity preserving finite difference (FD) scheme and an implicit positive FD scheme for the numerical solution of dengue epidemic reaction-diffusion model with incubation period of virus. The proposed schemes are unconditionally stable and preserve all the essential properties of the solution of the dengue reaction diffusion model. This proposed FD schemes are unconditionally dynamically consistent with positivity property and converge to the true equilibrium points of dengue epidemic reaction diffusion system. Comparison of the proposed scheme with the well-known existing techniques is also presented. The time efficiency of both the proposed schemes is also compared, with the two widely used techniques.