Browsing by Author "Mistikoglu, Selcuk"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 0Citation - Scopus: 0Design, Optimization, Simulation, and Implementation of a 3d Printed Soft Robotic Peristaltic Pump(Iop Publishing Ltd, 2024) Totuk, Onat Halis; Mistikoglu, Selcuk; Guvenc, Mehmet Ali; Mekatronik MühendisliğiThis study presents an innovative approach to fluidic pumping using soft robotics, designed to circulate fluid through soft conduits for delicate environments like blood streams where traditional peristaltic pumps may not be feasible. A novel soft robotic peristaltic pump is optimized and implemented, featuring 3D printed ring-shaped actuators and a PDMS pipe housing a Newtonian fluid. The design includes a three-stage actuator ring structure, actuated sequentially for peristaltic motion. A parametric finite element model predicts the required pressure, and the Mooney-Rivlin 5 Parameters hyper-elastic material model ensures accurate material properties. Optimization uses response surface analysis in Minitab and MATLAB Simulink Simscape simulations to achieve maximum flow rate with minimal power and pressure. Experimental validation confirms the simulations, achieving an optimal flow rate of 0.27 ml s(-1) at a 450 ms cycle, with minor discrepancies due to friction and measurement errors. This study demonstrates the scalability of linearly sequenced soft squeeze actuators into an effective pump, validated by both simulation and experiments. Future applications include medical devices addressing deep venous thrombosis, with further research exploring control theory for optimization and comparing performance with conventional pumps to enhance practical applicability.Article Citation - WoS: 0Citation - Scopus: 0Modeling and Optimization of a Peano-HASEL Actuator Peristaltic Pump(Natl inst Science Communication-niscair, 2023) Totuk, Onat Halis; Totuk, Onat Halis; Mistikoglu, Selcuk; 284521; Mekatronik MühendisliğiPeano-Hasel (hydraulically amplified self-healing electrostatic) pumps are crucial devices with unique mechanisms and versatile applications. They simulate muscle contractions to move fluids or materials through tubes. The Peano-Hasel method, a specific design, achieves flow by compressing a segmented tube externally. Exploring the design aspects of Peano-Hasel pumps can lead to advancements in optimizing their performance, efficiency, reliability, and control systems. This paper presents a novel method of peristaltic pumping on soft pipes using Peano-HASEL actuators. In the study, a design evaluation of an external ring-type pump over a PDMS (Polydimethylsiloxane -commonly referred to as silicone) tube containing Newtonian fluids is made, and a novel multi-pouch ring shape design is proposed. Our method utilizes a peripheral and compact design that allows for more efficient sinusoidal pumping action. The close proximity of the rings in the longitudinal direction enhances the effectiveness of the pumping process. The actuator is analytically modeled and optimized for maximum areal contraction and flow rate using a differential evolution algorithm. A MATLAB Simulink Simscape model is generated, and the system is simulated. As a result, an optimal solution for the number of pouches was found to be eight, considering ring geometry and applicability. It was also seen from the simulation that a sinusoidal squeezing scheme of a ring-type pump creates the desired action. Based on the analytical model presented, it has been demonstrated that the optimal flow rate is achieved when there are eight pouches, and they are fully circular after being energized.