Browsing by Author "Muhammad, Taseer"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation Count: Lashin, Maha M. A.;...et.al. (2022). "Magnetic Field Effect on Heat and Momentum of Fractional Maxwell Nanofluid within a Channel by Power Law Kernel Using Finite Difference Method", Complexity, Vol.2022.Magnetic Field Effect on Heat and Momentum of Fractional Maxwell Nanofluid within a Channel by Power Law Kernel Using Finite Difference Method(2022) Lashin, Maha M. A.; Usman, Muhammad; Asjad, Muhammad Imran; Ali, Arfan; Jarad, Fahd; Muhammad, Taseer; 234808The mathematical model of physical problems interprets physical phenomena closely. This research work is focused on numerical solution of a nonlinear mathematical model of fractional Maxwell nanofluid with the finite difference element method. Addition of nanoparticles in base fluids such as water, sodium alginate, kerosene oil, and engine oil is observed, and velocity profile and heat transfer energy profile of solutions are investigated. The finite difference method involving the discretization of time and distance parameters is applied for numerical results by using the Caputo time fractional operator. These results are plotted against different physical parameters under the effects of magnetic field. These results depicts that a slight decrease occurs for velocity for a high value of Reynolds number, while a small value of Re provides more dominant effects on velocity and temperature profile. It is observed that fractional parameters α and β show inverse behavior against uy,t and θy,t. An increase in volumetric fraction of nanoparticles in base fluids decreases the temperature profile of fractional Maxwell nanofluids. Using mathematical software of MAPLE, codes are developed and executed to obtain these results.Article Citation Count: Farooq, Umar;...et.al. (2023). "Numerical framework of hybrid nanofluid over two horizontal parallel plates with non-linear thermal radiation", International Journal of Thermofluids, Vol.18.Numerical framework of hybrid nanofluid over two horizontal parallel plates with non-linear thermal radiation(2023) Farooq, Umar; Waqas, Hassan; Noreen, Sobia; Imran, Muhammad; Akgül, Ali; Baleanu, Dumitru; Din, Sayed M.El; Muhammad, Taseer; Galal, Ahmed M; 56389Significance of study: High combustion temperatures necessitate appropriate cooling systems in the combustion process. Regenerative cooling is used in the majority of chambers in liquid propellant engines. The addition of nanoparticles to the cooling fluid is a novel technique to increase the efficiency of heat transfer in the regenerative cooling process. Aim of the study: In this investigation, we investigate the two-dimensional flow of the hybrid nanofluid with suction/injection effect over two horizontal parallel plates. The non-linear thermal radiation effect is measured in the model of a hybrid nanofluid. Here we use single-walled carbon nanotubes, multi-walled carbon nanotubes, nickel-zinc iron oxide, and manganese zinc iron oxide with base fluid engine oil. The effects of different shape factors (Sphere, Bricks, Cylinder, Platelets, Column, and Lamina)are also incorporated. Research methodology: Using appropriate similarity transformations, the controlling partial differential equations are transformed into ordinary differential equations. Using the shooting strategy, the transformed higher-order ordinary differential equations are converted to first-order ordinary differential equations, and the Bvp4c built-in function in MATLAB is used to produce the numerical and graphical results of the flow parameter. Conclusion: The velocity profile is decreased by the increasing values of the suction/injection parameter. The temperature distribution profile declined for the higher values of the temperature ratio parameter. The combination of nickel zinc iron oxide and carbon nanotube nanomaterials to engine oil as a cooling fluid enhanced the heat transfer coefficient. According to the findings, carbon nanotubes outperform nickel zinc iron oxide nanoparticles in terms of increasing heat transfer coefficient and improving regenerative cooling.Article Citation Count: Ullah, Naeem;...et.al. (2022). "On soliton solutions of fractional-order nonlinear model appears in physical sciences", AIMS Mathematics, Vol.7, No.5, pp.7421-7440.On soliton solutions of fractional-order nonlinear model appears in physical sciences(2022) Ullah, Naeem; Asjad, Muhammad Imran; Awrejcewicz, Jan; Muhammad, Taseer; Baleanu, Dumitru; 56389In wave theory, the higher dimensional non-linear models are very important to define the physical phenomena of waves. Herein study we have built the various solitons solutions of (4+1)- dimensional fractional-order Fokas equation by using two analytical techniques that is, the Sardarsubequation method and new extended hyperbolic function method. Different types of novel solitons are attained such as, singular soliton, bright soliton, dark soliton, and periodic soliton. To understand the physical behavior, we have plotted 2D and 3D graphs of some selected solutions. From results we concluded that the proposed methods are straightforward, simple, and efficient. Moreover, this paper offers a hint, how we can convert the fractional-order PDE into an ODE to acquire the exact solutions. Also, the proposed methods and results can be help to examine the advance fractional-order models which seem in optics, hydrodynamics, plasma and wave theory etc.Article Citation Count: Guo, Hui-Hui...et al. (2021). "The investigation of energy management and atomic interaction between coronavirus structure in the vicinity of aqueous environment of H2O molecules via molecular dynamics approach", Journal of Molecular Liquids, Vol. 341.The investigation of energy management and atomic interaction between coronavirus structure in the vicinity of aqueous environment of H2O molecules via molecular dynamics approach(2021) Guo, Hui-Hui; Yazid Bajuri, Mohd; Alrabaiah, Hussam; Muhammad, Taseer; Mohammad, Sajadi S.; Ghaemi, Ferial; Baleanu, Dumitru; Karimipour, Arash; 56389The coronavirus pandemic is caused by intense acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Identifying the atomic structure of this virus can lead to the treatment of related diseases in medical cases. In the current computational study, the atomic evolution of the coronavirus in an aqueous environment using the Molecular Dynamics (MD) approach is explained. The virus behaviors by reporting the physical attributes such as total energy, temperature, potential energy, interaction energy, volume, entropy, and radius of gyration of the modeled virus are reported. The MD results indicated the atomic stability of the simulated virus significantly reduced after 25.33 ns. Furthermore, the volume of simulated virus changes from 182397 Å3 to 372589 Å3 after t = 30 ns. This result shows the atomic interaction between various atoms in coronavirus structure decreases in the vicinity of H2O molecules. Numerically, the interaction energy between virus and aqueous environment converges to −12387 eV and −251 eV values in the initial and final time steps of the MD study procedure, respectively.