Browsing by Author "Nanehkaran, Yaser A."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Article Citation - WoS: 0Citation - Scopus: 0Adaptive Modeling of Landslide Susceptibility Using Analytical Hierarchy Process and Multi-Objective Decision Optimization(Elsevier Sci Ltd, 2025) Mao, Yimin; Zhu, Licai; Chen, Junde; Nanehkaran, Yaser A.This study develops a detailed landslide susceptibility map for Kermanshah province, Iran, by analyzing field surveys, historical data, and remote sensing. Fifteen key factors-such as geomorphology, geology, climate, seismicity, and human activities-were identified and ranked using Analytical Hierarchy Process (AHP) and Multi-Objective Decision Optimization (MODO) within a GIS framework. The analysis classifies landslide risk into five categories: very high (18.4%), high (33.98%), moderate (24.19%), low (14.36%), and very low (9.07%). Pixel rate assessment confirmed the map's accuracy, showing that eastern and northeastern regions are particularly prone to landslides, with a substantial portion of the province at moderate to high risk. The study recommends using this map to guide targeted risk mitigation and land-use planning efforts to reduce landslide impacts on vulnerable areas. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.Article Citation - WoS: 0Citation - Scopus: 0Convolutional Neural Network-Based Deep Learning for Landslide Susceptibility Mapping in the Bakhtegan Watershed(Nature Portfolio, 2025) Feng, Li; Zhang, Maosheng; Mao, Yimin; Liu, Hao; Yang, Chuanbo; Dong, Ying; Nanehkaran, Yaser A.Landslides pose a significant threat to infrastructure, ecosystems, and human safety, necessitating accurate and efficient susceptibility assessment methods. Traditional models often struggle to capture the complex spatial dependencies and interactions between geological and environmental factors. To address this gap, this study employs a deep learning approach, utilizing a convolutional neural network (CNN) for high-precision landslide susceptibility mapping in the Bakhtegan watershed, southwestern Iran. A comprehensive landslide inventory was compiled using 235 documented landslide locations, validated through remote sensing and field surveys. An equal number of non-landslide locations were systematically selected to ensure balanced model training. Fifteen key conditioning factors-including topographical, geological, hydrological, and climatological variables-were incorporated into the model. While traditional statistical methods often fail to extract spatial hierarchies, the CNN model effectively processes multi-dimensional geospatial data, learning intricate patterns influencing slope instability. The CNN model outperformed other classification approaches, achieving an accuracy of 95.76% and a precision of 95.11%. Additionally, error metrics confirmed its reliability, with a mean absolute error (MAE) of 0.11864, mean squared error (MSE) of 0.18796, and root mean squared error (RMSE) of 0.18632. The results indicate that the northern and northeastern regions of the Bakhtegan watershed are highly susceptible to landslides, highlighting areas where proactive mitigation strategies are crucial. This study demonstrates that deep learning, particularly CNNs, offers a powerful and scalable solution for landslide susceptibility assessment. The findings provide valuable insights for urban planners, engineers, and policymakers to implement effective risk reduction strategies and enhance resilience in landslide-prone regions.Article Citation - WoS: 0Citation - Scopus: 0Covid-19 Pandemic Microplastics Environmental Impacts Predicted by Deep Random Forest (Drf) Predictive Model(Springer, 2024) Chen, Liping; Sabonchi, Arkan K. S.; Nanehkaran, Yaser A.BackgroundMicroplastic pollution is a pressing issue with far-reaching environmental and public health consequences. This study delves into the intricacies of predicting microplastic pollution during the COVID-19 pandemic in Tehran, Iran.MethodsThe research introduces a rigorous comparative analysis that evaluates the predictive prowess of the Deep Random Forest algorithm and established benchmarks, such as Random Forest, Decision Trees, Gradient Boosting, AdaBoost, and Support Vector Machine. The evaluation process encompasses a meticulous 70-30 training-testing split of the main data set. Performance is assessed by analysis metrics, including ROC and statistical errors. The primary data set encompasses distinct categories, including household wastes, hospital wastes, clinics wastes, and unknown-originated susceptible waste which is categorized in Infected items, PPEs, SUPs, Test kits, Medical packages, Unknown-originated pandemic mircoplastic waste. Deliberately, this data set was partitioned into training and testing subsets, ensuring the robustness and reliability of subsequent analyses. Approximately 70% of the main database was allocated to the training data set, with the remaining 30% constituting the testing data set.ResultsThe findings underscore the proposed algorithm's supremacy, boasting an impressive AUC = 0.941. This exceptional score reflects the model's precision in categorizing microplastics. These results have profound implications for environmental management and public health during pandemics.ConclusionsThe study positions the proposed model as a potent tool for microplastic pollution prediction, encouraging further research to refine predictive models and tap into new data sources for a more comprehensive understanding of microplastic dynamics in urban settings.Article Citation - WoS: 10Citation - Scopus: 9Deep learning method for compressive strength prediction for lightweight concrete(Techno-press, 2023) Nanehkaran, Yaser A.; Azarafza, Mohammad; Pusatli, Tolga; Bonab, Masoud Hajialilue; Irani, Arash Esmatkhah; Kouhdarag, Mehdi; Derakhshani, Reza; 51704Concrete is the most widely used building material, with various types including high-and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions.Article Citation - WoS: 31Citation - Scopus: 33Fuzzy-Based Intelligent Model for Rapid Rock Slope Stability Analysis Using Qslope(Mdpi, 2023) Mao, Yimin; Chen, Liang; Nanehkaran, Yaser A.; Azarafza, Mohammad; Derakhshani, RezaArtificial intelligence (AI) applications have introduced transformative possibilities within geohazard analysis, particularly concerning the assessment of rock slope instabilities. This study delves into the amalgamation of AI and empirical techniques to attain highly precise outcomes in the evaluation of slope stability. Specifically, our primary objective is to propose innovative and efficient methods by investigating the integration of AI within the well-regarded Q(slope) system, renowned for its efficacy in analyzing rock slope stability. Given the complexities inherent in rock characteristics, particularly in coastal regions, the Q(slope) system necessitates adjustments and harmonization with other geomechanical methodologies. Uncertainties prevalent in rock engineering, compounded by water-related factors, warrant meticulous consideration during all calculations. To address these complexities, we present a novel approach through the infusion of fuzzy set theory into the Q(slope) classification, leveraging fuzziness to effectively quantify and accommodate uncertainties. Our approach employs a sophisticated fuzzy algorithm encompassing six inputs, three outputs, and 756 fuzzy rules, thereby enabling a robust assessment of rock slope stability in coastal regions. The implementation of this method capitalizes on the high-level programming language Python, enhancing computational efficiency. To validate the potency of our AI-based approach, we conducted preliminary tests on slope instabilities within coastal zones, indicating a promising initial direction. The results underwent thorough evaluation, affirming the precision and dependability of the proposed method. However, it is crucial to emphasize that this work represents a first attempt to apply AI to the evaluation of rock slope stability. Our findings underscore a high degree of concurrence and expeditious stability assessment, vital for timely and effective hazard mitigation. Nonetheless, we acknowledge that the reliability of this innovative method must be established through broader applications across diverse scenarios. The proposed AI-based approach's effectiveness is validated through a preliminary survey on a slope instability case within a coastal region, and its potential merits must be substantiated through broader validation efforts.Article Citation - WoS: 0Citation - Scopus: 0Innovative Stability Analysis of Complex Secondary Toppling Failures in Rock Slopes Using the Block Theory(Springer Heidelberg, 2025) Mao, Yimin; Azarafza, Mohammad; Bonab, Masoud Hajialilue; Pusatli, Tolga; Nanehkaran, Yaser A.We present the block theory-based secondary toppling stability analysis method (BTSTSA), an advanced and novel method specifically designed to assess secondary toppling failures in slopes. This innovative method comprehensively accounts for various failure mechanisms and computes the factor of safety (F.S) for rock slopes. Grounded in Block theory principles, particularly the key-block method, and supplemented by limit equilibrium techniques, BTSTSA offers a practical and reliable analytical framework. Our investigation focused on five discontinuous rock slopes in the South Pars region, southwest Iran, which are affected by composite toppling failure mechanisms. The stability analysis results were meticulously verified using the Aydan-Kawamoto method, a recognized benchmark in the field. Comparative analysis consistently demonstrated that the BTSTSA approach generates more conservative estimates of the F.S compared to the Aydan-Kawamoto method. This conservatism underscores the robustness and reliability of the BTSTSA framework and highlights its implications for practical engineering applications. The integration of this innovative analytical method with data from these investigations offers crucial insights for geotechnical engineers, equipping them to manage the complexities of secondary toppling failures in discontinuous rock slopes. These findings emphasize the importance of considering conservatism in engineering applications and provide a more accurate and reliable assessment of slope stability, particularly concerning secondary toppling failures, thereby benefiting geotechnical engineering practices.Article Citation - WoS: 0Citation - Scopus: 0Ordered Clustering-Based Semantic Music Recommender System Using Deep Learning Selection(Tech Science Press, 2025) Ha, Weitao; Gang, Sheng; Navaei, Yahya D.; Gezawa, Abubakar S.; Nanehkaran, Yaser A.Music recommendation systems are essential due to the vast amount of music available on streaming platforms, which can overwhelm users trying to find new tracks that match their preferences. These systems analyze users' emotional responses, listening habits, and personal preferences to provide personalized suggestions. A significant challenge they face is the "cold start" problem, where new users have no past interactions to guide recommendations. To improve user experience, these systems aim to effectively recommend music even to such users by considering their listening behavior and music popularity. This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network, utilizing user comments and rankings as input. Initially, the system organizes users into clusters based on semantic similarity, followed by the utilization of their rating similarities as input for the convolutional neural network. This network then predicts ratings for unreviewed music by users. Additionally, the system analyses user music listening behaviour and music popularity. Music popularity can help to address cold start users as well. Finally, the proposed method recommends unreviewed music based on predicted high rankings and popularity, taking into account each user's music listening habits. The proposed method combines predicted high rankings and popularity by first selecting popular unreviewed music that the model predicts to have the highest ratings for each user. Among these, the most popular tracks are prioritized, defined by metrics such as frequency of listening across users. The number of recommended tracks is aligned with each user's typical listening rate. The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems, yielding a mean absolute error (MAE) rate and root mean square error (RMSE) rate of approximately 0.0017, a hit rate of 82.45%, an average normalized discounted cumulative gain (nDCG) of 82.3%, and a prediction accuracy of new ratings at 99.388%.Article Citation - WoS: 1Citation - Scopus: 1Predicting Stability Factors for Rotational Failures in Earth Slopes and Embankments Using Artificial Intelligence Techniques(de Gruyter Poland Sp Z O O, 2024) Cemiloglu, Ahmed; Cao, Yingying; Sabonchi, Arkan K. S.; Nanehkaran, Yaser A.This study focuses on slope stability analysis, a critical process for understanding the conditions, durability, mass properties, and failure mechanisms of slopes. The research specifically addresses rotational-type failure, the primary instability mechanism affecting earth slopes. Identifying and understanding key factors such as slope height, slope angle, density, cohesion, friction, water pore pressure, and tensile cracks are essential for effective stabilization strategies. The objective of this study is to develop accurate predictive models for slope stability analysis using advanced intelligent techniques, including data mining mapping and complex decision tree regression (DTR). The models were validated using performance metrics such as mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), and the coefficient of determination (R-2). Additionally, overall accuracy was assessed using a confusion matrix. The predictive model was tested on a dataset of 120 slope cases, achieving an accuracy of approximately 91.07% with DTR. The error rates for the training set were MAE = 0.1242, MSE = 0.1722, and RMSE = 0.1098, demonstrating the model's capability to effectively analyze and predict slope stability in earth slopes and embankments. The study concludes that these intelligent techniques offer a reliable approach for stability analysis, contributing to safer and more efficient slope management.