Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Adaptive Modeling of Landslide Susceptibility Using Analytical Hierarchy Process and Multi-Objective Decision Optimization

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

This study develops a detailed landslide susceptibility map for Kermanshah province, Iran, by analyzing field surveys, historical data, and remote sensing. Fifteen key factors-such as geomorphology, geology, climate, seismicity, and human activities-were identified and ranked using Analytical Hierarchy Process (AHP) and Multi-Objective Decision Optimization (MODO) within a GIS framework. The analysis classifies landslide risk into five categories: very high (18.4%), high (33.98%), moderate (24.19%), low (14.36%), and very low (9.07%). Pixel rate assessment confirmed the map's accuracy, showing that eastern and northeastern regions are particularly prone to landslides, with a substantial portion of the province at moderate to high risk. The study recommends using this map to guide targeted risk mitigation and land-use planning efforts to reduce landslide impacts on vulnerable areas. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Description

Ahangari Nanehkaran, Yaser/0000-0002-8055-3195

Keywords

Geo-Hazards, Landslides, Susceptibility Mapping, Provincial-Level, Modo, Arcgis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q2

Source

Volume

75

Issue

6

Start Page

4536

End Page

4551