Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Adaptive Modeling of Landslide Susceptibility Using Analytical Hierarchy Process and Multi-Objective Decision Optimization

dc.authorid Ahangari Nanehkaran, Yaser/0000-0002-8055-3195
dc.authorscopusid 35146268100
dc.authorscopusid 55103521100
dc.authorscopusid 57201793640
dc.authorscopusid 57211004694
dc.contributor.author Mao, Yimin
dc.contributor.author Zhu, Licai
dc.contributor.author Chen, Junde
dc.contributor.author Nanehkaran, Yaser A.
dc.date.accessioned 2025-05-11T17:03:45Z
dc.date.available 2025-05-11T17:03:45Z
dc.date.issued 2025
dc.department Çankaya University en_US
dc.department-temp [Mao, Yimin] Shaoguan Univ, Sch Informat Sci & Engn, Shaoguan 512005, Guangdong, Peoples R China; [Zhu, Licai; Nanehkaran, Yaser A.] Yancheng Teachers Univ, Sch Informat Engn, Yancheng 224002, Jiangsu, Peoples R China; [Chen, Junde] Chapman Univ, Dale & Sarah Ann Fowler Sch Engn, Orange, CA 92866 USA; [Chen, Junde] Xiangtan Univ, Dept Elect Commerce, Xiangtan 411105, Hunan, Peoples R China; [Nanehkaran, Yaser A.] Cankaya Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-06790 Ankara, Turkiye en_US
dc.description Ahangari Nanehkaran, Yaser/0000-0002-8055-3195 en_US
dc.description.abstract This study develops a detailed landslide susceptibility map for Kermanshah province, Iran, by analyzing field surveys, historical data, and remote sensing. Fifteen key factors-such as geomorphology, geology, climate, seismicity, and human activities-were identified and ranked using Analytical Hierarchy Process (AHP) and Multi-Objective Decision Optimization (MODO) within a GIS framework. The analysis classifies landslide risk into five categories: very high (18.4%), high (33.98%), moderate (24.19%), low (14.36%), and very low (9.07%). Pixel rate assessment confirmed the map's accuracy, showing that eastern and northeastern regions are particularly prone to landslides, with a substantial portion of the province at moderate to high risk. The study recommends using this map to guide targeted risk mitigation and land-use planning efforts to reduce landslide impacts on vulnerable areas. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. en_US
dc.description.sponsorship Key Improvement Pro-jects of Guangdong Province [2022ZDJS048]; Shaoguan Science and Technology Plan Projects [SZ2022KJ06, 220607154531533]; Science and Technology pro-jects of Educa tion Government in Jiangxi province [GJJ209406, GJJ218505, GJJ218504]; National Nature Sciences Foundation of China [42250410321] en_US
dc.description.sponsorship <BOLD>Funding</BOLD> This research was funded by the Key Improvement Pro-jects of Guangdong Province (Grant Number: 2022ZDJS048) , the Shaoguan Science and Technology Plan Projects (Grant Numbers: SZ2022KJ06 and 220607154531533) , and the Science and Technology pro-jects of Educa tion Government in Jiangxi province (Grant Numbers: GJJ209406, GJJ218505, and GJJ218504) , and the National Nature Sciences Foundation of China with (Grant Number: 42250410321) . en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.asr.2024.12.061
dc.identifier.endpage 4551 en_US
dc.identifier.issn 0273-1177
dc.identifier.issn 1879-1948
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85214470254
dc.identifier.scopusquality Q2
dc.identifier.startpage 4536 en_US
dc.identifier.uri https://doi.org/10.1016/j.asr.2024.12.061
dc.identifier.uri https://hdl.handle.net/20.500.12416/9617
dc.identifier.volume 75 en_US
dc.identifier.wos WOS:001440516800001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Geo-Hazards en_US
dc.subject Landslides en_US
dc.subject Susceptibility Mapping en_US
dc.subject Provincial-Level en_US
dc.subject Modo en_US
dc.subject Arcgis en_US
dc.title Adaptive Modeling of Landslide Susceptibility Using Analytical Hierarchy Process and Multi-Objective Decision Optimization en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files