Browsing by Author "Ozdemir, Anil"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 21Citation - Scopus: 20Experimental Investigation of Damaged Square Short Rc Columns With Low Slenderness Retrofitted by Cfrp Strips Under Axial Load(Elsevier Science inc, 2020) Ghoroubi, Rahim; Mercimek, Omer; Ozdemir, Anil; Anil, Ozgur; 30604The aim of this study is to develop the retrofitting details, which will increase axial ultimate load capacity, stiffness, displacement ductility ratios, and energy dissipation capacities of short reinforced concrete (RC) low slenderness columns to avoid adverse effects on earthquake performance. The main variables examined in the experimental study are the Carbon Reinforced Fiber Polymer (CFRP) strip width used for retrofitting, the distance between CFRP strips, the use of the anchor at the overlap zone in the CFRP strips, and the placement of the CFRP strips horizontally or vertically to the column axis. For these purposes, eleven square short RC columns with a dimension of 150x150x500 mm (with low slenderness ratio: lambda = 11.5) were produced. The columns were damaged up to 50% of their axial load carrying capacity, then retrofitted with CFRP strips in different ways. The short RC columns with low slenderness ratio were tested under monotonic axial loading until they failure. By obtaining the axial load-displacement graphs of the test specimens, the ultimate axial load capacity, initial stiffness value, displacement-ductility ratios, and energy dissipation capacities are calculated and interpreted. It has been found that the most successful retrofitting detail is obtained when CFRP strips are placed perpendicular to the column axis, and CFRP fan-type anchors are used in the strip overlap region.Article Citation - WoS: 28Citation - Scopus: 32Investigation of Strengthened Low Slenderness Rc Column by Using Textile Reinforced Mortar Strip Under Axial Load(Elsevier Sci Ltd, 2022) Mercimek, Omer; Ghoroubi, Rahim; Ozdemir, Anil; Anil, Ozgur; Erbas, YasarAn experimental and numerical study was conducted to improve the critical performance of low slenderness reinforced concrete columns, such as ultimate load capacity, initial stiffness, and energy dissipation capacity, using Textile-Reinforced Mortar (TRM) strip. A total of 17 reinforced concrete columns were fabricated and tested under uni-axial compression. The effect of carbon textile type, strip width and distance, usage of carbon fiber reinforced polymer (CFRP) fan type anchors was investigated. The experimental part of the study indicated that the ultimate load capacities of reinforced concrete columns strengthened with TRM strips was increased to 1.19-1.78 times. Their initial stiffness increased to 1.01-1.99 times, and energy dissipation capacity values increased to 1.22 and 2.09 times. In addition, simulation models for the experimental specimens were created with the ABAQUS finite element software. Then the results of analyses and the experimental outputs were compared together and interpreted. Finally, using the verified FEM model, a parametric numerical study was carried out to determine the effect of the increase in the concrete compressive strength of the column on the performance of the specimens examined within the scope of the study. According to the main findings of this study, it was demonstrated that the application of the proposed TRM strips for strengthening reinforced concrete columns was a successful method.Conference Object Citation - WoS: 1Strengthening of Columns With Different Innovative Composite Materials for Rc Buildings Without Sufficient Earthquake Resistance(Gazi Univ, 2022) Mercimek, Omer; Ghoroubi, Rahim; Ozdemir, Anil; Anil, OzgurThe Turkey includes the world's second most active faults and is geographically situated at a very high seismic activity. Research on strengthening RC (reinforced-concrete) structures without adequate earthquake resistance has become an extremely important issue. Taking into account the objectives of this research, an experimental study is designed to strengthen the columns without adequate earthquake resistance by using carbon-reinforced-fiber-fabric (CFRP) strips and textile-reinforced-mortar (TRM) layers with two separate types of advanced composite materials. The variables evaluated within the study horizon are the composite material type used for strengthening, the width of the strip, and whether or not the anchor is used at the point of strip overlap. In this experiment, nine RC column were produced and were tested by affecting axial load, which are the reference test specimens without strengthening and eight RC column test specimens strengthened with two separate types of composite material. The loaddisplacement behavior, initial stiffness value, energy dissipation capacities, ultimate load capacity and displacement ductility ratios have been measured according to the test results. It was also examined which of the two different composite materials used to strengthen the columns of the RC is more efficient in improving the columns performance.
