Browsing by Author "Par, Oznur Esra"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 2Citation - Scopus: 2Clinical Decision Support Systems: From the Perspective of Small and Imbalanced Data Set(Ios Press, 2019) Par, Oznur Esra; Sever, Hayri; Akcapinar Sezer, Ebru; Sever, Hayri; 11916; Bilgisayar MühendisliğiClinical decision support systems are data analysis software that supports health professionals' decision - making the process to reach their ultimate outcome, taking into account patient information. However, the need for decision support systems cannot be denied because of most activities in the field of health care within the decision-making process. Decision support systems used for diagnosis are designed based on disease due to the complexity of diseases, symptoms, and disease-symptoms relationships. In the design and implementation of clinical decision support systems, mathematical modeling, pattern recognition and statistical analysis techniques of large databases and data mining techniques such as classification are also widely used. Classification of data is difficult in case of the small and / or imbalanced data set and this problem directly affects the classification performance. Small and/or imbalance dataset has become a major problem in data mining because classification algorithms are developed based on the assumption that the data sets are balanced and large enough. Most of the algorithms ignore or misclassify examples of the minority class, focus on the majority class. Most health data are small and imbalanced by nature. Learning from imbalanced and small data sets is an important and unsettled problem. Within the scope of the study, the publicly accessible data set, hepatitis was oversampled by distance-based data generation methods. The oversampled data sets were classified by using four different machine learning algorithms. Considering the classification scores of four different machine learning algorithms (Artificial Neural Networks, Support Vector Machines, Naive Bayes and Decision Tree), optimal synthetic data generation rate is recommended.Conference Object Citation - WoS: 7Citation - Scopus: 13Small and Unbalanced Data Set Problem in Classification(Ieee, 2019) Par, Oznur Esra; Sever, Hayri; Sezer, Ebru Akcapinar; Sever, Hayri; 11916; Bilgisayar MühendisliğiClassification of data is difficult in case of small and unbalanced data set and this problem directly affects the classification performance. Small and / or the imbalance dataset has become a major problem in data mining. Classification algorithms are developed based on the assumption that the data sets are balanced and large enough. The most of the algorithms ignore or misclassify examples of the minority class, focus on the majority class. Small and unbalanced data set problem is frequently encountered in medical data mining due to some limitations. Within the scope of the study, the public accessible data set, hepatitis, was divided into small and imblanced data subsets, each of the data subsets were oversampled by distance based data generation methods. The oversampled data sets were classified by using four different machine learning algorithms (Artificial Neural Networks, Support Vector Machines, Naive Bayes and Decision Tree) and the classification scores were compared.