Browsing by Author "Rafiq, M."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article A FRACTAL FRACTIONAL MODEL FOR CERVICAL CANCER DUE TO HUMAN PAPILLOMAVIRUS INFECTION(2021) Baleanu, Dumitru; Ahmed, N.; Raza, A.; Iqbal, Z.; Rafiq, M.; Rehman, M. A.; Baleanu, Dumitru; 56389In this paper, we have investigated women's malignant disease, cervical cancer, by constructing the compartmental model. An extended fractal-fractional model is used to study the disease dynamics. The points of equilibria are computed analytically and verified by numerical simulations. The key role of R-0 in describing the stability of the model is presented. The sensitivity analysis of R-0 for deciding the role of certain parameters altering the disease dynamics is carried out. The numerical simulations of the proposed numerical technique are demonstrated to test the claimed facts.Article A novel time efficient structure-preserving splitting method for the solution of two-dimensional reaction-diffusion systems(2020) Baleanu, Dumitru; Korkmaz, Alper; Rafiq, M.; Baleanu, Dumitru; Alshomrani, Ali Sale; Rehman, M. A.; Iqbal, M. S.; 56389In this article, the first part is concerned with the important questions related to the existence and uniqueness of solutions for nonlinear reaction-diffusion systems. Secondly, an efficient positivity-preserving operator splitting nonstandard finite difference scheme (NSFD) is designed for such a class of systems. The presented formulation is unconditionally stable as well as implicit in nature and even time efficient. The proposed NSFD operator splitting technique also preserves all the important properties possessed by continuous systems like positivity, convergence to the fixed points of the system, and boundedness. The proposed algorithm is implicit in nature but more efficient in time than the extensively used Euler method.Article Mathematical analysis for the effect of voluntary vaccination on the propagation of Corona virus pandemic(2021) Baleanu, Dumitru; Abbas, M.; Rafiq, M.; Baleanu, Dumitru; 56389In this manuscript, a new nonlinear model for the rapidly spreading Corona virus disease (COVID-19) is developed. We incorporate an additional class of vaccinated humans which ascertains the impact of vaccination strategy for susceptible humans. A complete mathematical analysis of this model is conducted to predict the dynamics of Corona virus in the population. The analysis proves the effectiveness of vaccination strategy employed and helps public health services to control or to reduce the burden of corona virus pandemic. We first prove the existence and uniqueness and then boundedness and positivity of solutions. Threshold parameter for the vaccination model is computed analytically. Stability of the proposed model at fixed points is investigated analytically with the help of threshold parameter to examine epidemiological relevance of the pandemic. We apply LaSalle's invariance principle from the theory of Lyapunov function to prove the global stability of both the equilibria. Two well known numerical techniques namely Runge–Kutta method of order 4 (RK4), and the Non-Standard Finite Difference (NSFD) method are employed to solve the system of ODE's and to validate our obtained theoretical results. For different coverage levels of voluntary vaccination, we explored a complete quantitative analysis of the model. To draw our conclusions, the effect of proposed vaccination on threshold parameter is studied numerically. It is claimed that Corona virus disease could be eradicated faster if a human community selfishly adopts mandatory vaccination measures at various coverage levels with proper awareness. Finally, we have executed the joint variability of all classes to understand the effect of vaccination strategy on a disease dynamics. © 2021Article Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic(2022) Butt, A.I.K.; Ahmad, W.; Rafiq, M.; Baleanu, D.; 56389In this manuscript, we formulated a new nonlinear SEIQR fractional order pandemic model for the Corona virus disease (COVID-19) with Atangana-Baleanu derivative. Two main equilibrium points F0∗,F1∗ of the proposed model are stated. Threshold parameter R0 for the model using next generation technique is computed to investigate the future dynamics of the disease. The existence and uniqueness of solution is proved using a fixed point theorem. For the numerical solution of fractional model, we implemented a newly proposed Toufik-Atangana numerical scheme to validate the importance of arbitrary order derivative ρ and our obtained theoretical results. It is worth mentioning that fractional order derivative provides much deeper information about the complex dynamics of Corona model. Results obtained through the proposed scheme are dynamically consistent and good in agreement with the analytical results. To draw our conclusions, we explore a complete quantitative analysis of the given model for different quarantine levels. It is claimed through numerical simulations that pandemic could be eradicated faster if a human community selfishly adopts mandatory quarantine measures at various coverage levels with proper awareness. Finally, we have executed the joint variability of all classes to understand the effectiveness of quarantine policy on human population.Article Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system(2019) Baleanu, Dumitru; Wei, Zhouchao; Baleanu, Dumitru; Rafiq, M.; Rehman, M. A.; 56389In this work, we investigate the numerical solution of the susceptible exposed infected and recovered measles epidemic model. We also evaluate the numerical stability and the bifurcation value of the transmission parameter from susceptibility to a disease of the proposed epidemic model. The proposed method is a chaos free finite difference scheme, which also preserves the positivity of the solution of the given epidemic model. Published under license by AIP Publishing.