Browsing by Author "Saltik, Simge"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 3Citation - Scopus: 3A Comparative Study of Effects of Additive Particle Size and Content on Wetting Behavior and Brazing Performance of C/Sic Composite(Springer, 2023) Esen, Ziya; Dericioglu, Arcan F.; Saltik, Simge; 52373; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThis study has focused on the influence of size and content of SiC particle incorporation on the wetting behavior of the Ticusil brazing filler alloy and on its brazing performance in C/SiC composite/Ti6Al4V alloy joints. The effect of the size and content of additive SiC particles on the variation of molten brazing filler alloy contact angle was recorded at various brazing time and temperatures. Moreover, the microstructural evolution and mechanical properties of the additive containing C/SiC composite/Ti6Al4V alloy joints produced by the brazing method were investigated. The contact angles in both brazing filler alloys containing nano- and micro-sized SiC particles exhibited a sudden decrease with time during isothermal holding as observed in as-received brazing filler alloys. As the quantity of the SiC particles increased in the brazing alloy, the recorded contact angle values including the final, stable contact angle increased, while the time for the drastic contact angle change also increased remarkably. Compared to as-received counterparts, the addition of 2 wt.% nano-sized SiC and 1 wt.% micro-sized SiC particles improved the shear strength of the joints by 35 and 8%, respectively. Although the recorded contact angle values were close to each other in brazing alloys containing SiC particles with different sizes (37 and 42 degrees for 1 wt.% micro-sized and 2 wt.% nano-sized additions), higher increment was achieved in the mechanical performance of the joints with nano-sized SiC additive due to more homogeneous reinforcement effect of the nanoparticles. The results indicated that the optimum brazing filler alloy contact angle for the highest shear strength is similar to 40 degrees for both nano- and micron-sized additive containing Ticusil filler alloy.Article Citation - WoS: 2Citation - Scopus: 2Wetting Behavior and Reaction Layer Formation in C/Sic Composite-Titanium Alloy Joints(Taylor & Francis Ltd, 2022) Esen, Ziya; Dericioglu, Arcan F.; Saltik, Simge; 52373; 09.01. Ortak Dersler Bölümü; 09. Rektörlük; 01. Çankaya ÜniversitesiThe present study investigates the effect of brazing parameters on reaction layer formation, and mechanical properties of C/SiC composite-Ti6Al4V alloy joints produced by brazing technique. The wetting mechanism of the C/SiC composite surface by the Ag-CuTi-based active brazing filler alloy has also been studied and correlated with the reaction layer formation. The strength of C/SiC composite/Ti6Al4V alloy joints increased at first and then decreased with increasing reaction layer thickness. The joints with 1-mu m-thick reaction layer, which were obtained by brazing at 915 degrees C for 15 min, had the highest shear strength of 33 MPa. Brazing filler alloy presented a minimum contact angle of 15 degrees on the C/SiC composite surface at 915 degrees C during the wetting experiments. 915 degrees C and 15 min were determined to be the optimised brazing parameters to ensure almost complete wetting and a uniform reaction layer for effective adhesion of the C/SiC composite surface.
