Browsing by Author "Saran, Ayşe Nurdan"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Master Thesis Bir Seyahat Öneri Sisteminde Modeller, Veri Stratejileri ve Hiperparametre Ayarını Keşfetmek(2024) Erkal, Necati; Saran, Ayşe NurdanÖneri sistemlerinin önemi son dönemde giderek artmaktadır. Verilerin karmaşıklığı nedeniyle kullanıcıların beğenebileceği bir öneride bulunmak giderek zorlaşıyor. Özellikle seyehat öneri sistemlerinde bir sonraki şehri önermek önemli ve zor bir görevdir. Çeşitli çalışmalara göre derin öğrenmeyi öneri sistemlerinde kullanmak önerilerin doğruluğunu arttırmaya ve karmaşık verileri ele almaya yardımcı olmaktadır. Bu tez önerilen derin öğrenme destekli seyehat öneri sistemi için yeni mimarileri, veri ve hiperparametre ayarlama tekniklerini ortaya koymaktadır. NVIDIA ekibinin WSDM WebTour 2021 yarışmasında kazanan öneri sistemi bu çalışmada kullanıldı. Kazanan çözümü anlamak için algoritma ve veri seti analiz edilip, çalışmayı geliştirmek için yeni çözümler önerilmiştir.Book Part Büyük Veri Mahremiyeti ve Güvenliği(Grafiker Yayınları, 2017) Saran, Ayşe Nurdan; 20868; Bilgisayar MühendisliğiBilim geliştikçe teknolojiler gelişmekte ve yeni teknolojilerde bilimin daha da gelişmesine ve bilinmezleri daha iyi anlamamıza, yeni çalışmalar yapmamıza en önemlisi çevremizi ve dünyamızı daha iyi anlamamızı kolaylaştırmaktadır. Son yıllarda “büyük veri”, “veri bilimi”, “açık veri” “büyük veri analitiği”, “bilgi ekonomisi” gibi başlıklar ülkemizde de pek çok etkinlikte tartışılmakta, çözümler geliştirilmeye çalışılmakta ve iyi örnekler oluşturulmaya çalışılmaktadır. Bu kitabın ülkemizde açık veri ve büyük veri analitiği, güvenliği ve mahremiyetinin gelişmesine katkılar sağlaması beklenmektedir. Verilerin günümüzün altın rezervleri olduğunun bilinciyle çalışmalar yapılmalıdır.Master Thesis Gizliliği Koruyan Federated Öğrenme ile Giriş Tespitini Geliştirme: Farklı Mahremiyet ve Artırımlı Öğrenme Entegrasyonu(2025) Asal, Ali Sadeq Hussein; Saran, Ayşe NurdanSiber güvenlikte, Saldırı Tespit Sistemleri (IDS), ağları ve sistemleri kötü niyetli faaliyetleri tespit etmek için tarar ve hassas veriler tehlikeye girmeden tehditleri tanımlamaya yardımcı olur. Makine öğreniminin (ML) tanıtılması, IDS'yi otomatik ve akıllı tehdit algılama mekanizmaları sağlayarak geliştirmiştir. Ancak, Federated Learning (FL) gibi dağıtılmış ortamlarda ML modellerinin eğitimi, model parametrelerinin analizi yoluyla hassas bilgileri açığa çıkarabilir. FL, verileri yerelleştirerek belirli gizlilik sorunlarını hafifletir, ancak gerçek bir gizlilik koruması için yeterli değildir ve geliştirilmesi gereklidir. Özellikle, Artırımlı Öğrenme (IL), IDS'yi yeniden eğitime ihtiyaç duymadan yeni siber güvenlik tehditlerine uyum sağlama yeteneği sunarak iyileştirir. Bu, hesaplama açısından maliyeti düşük tutar ve yeni saldırı davranışlarına hızla uyum sağlar. Özellikle, Federated Differential Privacy Enhanced Model Aggregation adlı bir yöntem öneriyoruz; bu yöntem, federated ML bağlamında hem gizliliği hem de doğruluğu artırmayı hedeflemektedir. Bu yöntem, bir global modelin başlatıldığı ve istemci tarafında eğitimle daha da geliştirildiği bir sunucu-istemci mimarisi kullanır ve güncellemeler güvenli bir şekilde birleştirilir. Ayrıca, veri gizliliğini artırmak için gradyanlara gürültü ekleyen DP-SGD optimizasyonuyla eğitilmiş çok katmanlı bir algılayıcı (MLP) kullandık. Performansı değerlendirdik ve deneysel sonuçlar, önerdiğimiz yaklaşımda sınıf artımlı öğrenmenin doğruluğunun %92,4'e ve özellik artımlı öğrenmenin %99,4'e ulaştığını göstermektedir. Bu sonuçlar, modelimizin yeni verileri iyi bir şekilde öğrenebildiğini ortaya koymaktadır. Süreç, gizliliği koruyucu ve verimli kalmakta olup farklı veri kümesi türleri üzerinde iyi performans sergilemektedir. Bu nedenle, modern çağda bir saldırı tespit sistemi (IDS) için geçerli bir aday olduğuna inanıyoruz.Article İstatistiksel ve Derin Öğrenme Modellerini Kullanarak Hisse Senedi Fiyat Tahmini(2023) Saran, Ayşe Nurdan; Saran, Ayşe Nurdan; Bilgisayar MühendisliğiBorsa analizi, geleceğe yönelik tahminler yapmak için finansal, politik ve sosyal göstergeleri göz önünde bulundurarak borsayı inceler ve değerlendirir. Büyük veri ve derin öğrenme teknolojilerindeki gelişmelerin çığır açan sonuçları, araştırmacıların ve endüstrinin dikkatini bilgisayar destekli borsa analizine çekmektedir. Geleneksel makine öğrenimi ve derin öğrenme modellerini kullanarak borsa analizi konusunda çeşitli çalışmalar bulunmaktadır. Bu çalışmada, temel model olarak Otoregresif Entegre Hareketli Ortalama (ARIMA) yöntemini tekrarlayan sinir ağlarının üç farklı modeliyle karşılaştırılmıştır; Uzun Kısa Süreli Bellek (Long Short Term Memory- LSTM) ağları, Geçitli Tekrarlayan Birim (Gated Recurrent Unit- GRU), dikkat katmanlı LSTM modeli. Bu çalışmada literatürdeki diğer çalışmalardan farklı olarak 28 tane finansal indikatör kullanılarak Borsa İstanbul verileri üzerinde gün içi tahminler yaparken dört farklı modelin sonuçları karşılaştırılmıştır. İstatistiksel ve doğrusal bir model olan ARIMA, zaman serileri tahmini için doğrusal olmayan RNN modelleri ile karşılaştırılmıştır ancak 3 sinir ağı modelinden de yüksek ortalama hata oranına sahip olduğu görülmüştür. LSTM sonuçları GRU modeline çok yakın olsa da GRU diğerlerinden biraz daha iyi performans göstermektedir. Dikkat mekanizmalı sinir ağı diğer temel sinir ağlarından daha iyi sonuç vermemektedir.Master Thesis Matris Çözümlemesi Tabanlı Öneri Sistemlerinin Geliştirilmesi: Seyahat Öneri Sistemleri Üzerine Karşılaştırmalı Bir Çalışma(2024) Mat, Abdullah Uğur; Saran, Ayşe NurdanÖneri sistemlerinin etkisi ve yararlılığı artmaya devam ettikçe, çeşitli uygulamalardaki önemi giderek daha belirgin hale gelmektedir. Bu nedenle, artan talep ve beklentileri karşılayacak hem verimli hem de yüksek doğruluğa sahip öneri sistemlerinin tasarımı ve uygulanması hayati önem taşımaktadır. Bu çalışma, bir seyahat tahmini öneri sistemleri yarışmasında birincilik ödülü alan bir modele odaklanmaktadır. Amacı, kullanılan modelin veri seti ile olan korelasyonu ve uygulanan azaltılmış veri setinin başarı oranı üzerindeki etkisinin model performansını etkileyip etkilemediğini araştırmaktır. Kaynak kullanımını azaltmak amacıyla veri setinde değişiklikler yapılmıştır. Genelde kullanılan yöntemlerin aksine, veri seti rastgele ve seçici azaltma yöntemleri kullanılarak beşte bir oranına kadar azaltılmış ve sonuçlar gözlemlenmiştir. Veri setinin rastgele azaltılması başarı oranında düşüşe neden olurken, yöntembilimsel azaltma yani seçimli azaltma başarı oranını önemli ölçüde artırmıştır. Orijinal modelde kullanılan derin öğrenme algoritmaları yerine, aynı ilkeleri kullanan başka bir algoritma olan Long Short-Term Memory (LSTM) kullanılmıştır. Gated Recurrent Unit (GRU) ve LSTM algoritmalarının veri seti üzerindeki etkileri de araştırılmıştır. Bu veri setleri için GRU algoritması, LSTM'den daha doğru sonuçlar üretmiştir. Embedding katmanlarında yeni modeller geliştirilmiş ve sonuçlar gözlemlenmiştir. Ayrıca, model tarafından kullanılan optimizatör değiştirilmiş ve diğer optimizatörlerin performansı değerlendirilmiştir. Optimizatörler, donanım üzerinde geniş bir yelpazede etkiler göstermiştir. Orjinal modelin elde ettiği başarı 0.5664 iken bu çalışmada yapılan deneylerde en yüksek ve en muteber 0.6654 başarıma ulaşılmıştır. Modellerde, optimizatörlerde ve özellik mühendisliğinde yapılan değişikliklerin etkili öneri sistemlerinin sürdürülebilirliği açısından yararlı olabileceğini savunuyoruz.Article Modified Attribute-Based Authentication for Multi-Agent Systems(2023) Saran, Ayşe Nurdan; Doğanaksoy, Ali; Saran, Ayşe Nurdan; Bilgisayar MühendisliğiAttribute-Based Encryption (ABE) is a type of authentication mechanism that validates both the users and their attributes. It is practical for the systems that need authorization according to credentials. In a multi-agent system, specifying an access policy within the user groups is crucial to enable authentic and confidential communication. This paper proposes an attribute-based authentication framework based on elliptic curves to provide privacy in multi-agent systems. In this system, we aim to alleviate the required burden of verification by ensuring that each unit verifies only a small amount of messages. Inspired by Zhang et al. [1], we use ABE for the multi-agent system to authenticate more than one user at a time; our scheme uses elliptic curve groups, unlike Zhang et al. We have thoroughly evaluated the various security attributes and discussed computational overheads for our proposed scheme.Book Part Parallelization of sparsity-driven change detection method(IEEE, 2017) Saran, Ayşe Nurdan; Nar, Fatih; Nar, Fatih; 20868; Bilgisayar Mühendisliği; MatematikIn this study, Sparsity-driven Change Detection (SDCD) method, which has been proposed for detecting changes in multitemporal synthetic aperture radar (SAR) images, is parallelized to reduce the execution time. Parallelization of the SDCD is realized using OpenMP on CPU and CUDA on GPU. Execution speed of the parallelized SDCD is shown on real-world SAR images. Our experimental results show that the computation time of the parallel implementation brings significant speed-ups.Article Citation - WoS: 12Citation - Scopus: 14Sparsity-driven change detection in multitemporal sar images(Ieee-inst Electrical Electronics Engineers inc, 2016) Nar, Fatih; Nar, Fatih; Ozgur, Atilla; Saran, Ayşe Nurdan; Saran, Ayse Nurdan; 252953; 20868; Bilgisayar Mühendisliği; MatematikIn this letter, a method for detecting changes in multitemporal synthetic aperture radar (SAR) images by minimizing a novel cost function is proposed. This cost function is constructed with log-ratio-based data fidelity terms and an l(1)-norm-based total variation (TV) regularization term. Log-ratio terms model the changes between the two SAR images where the TV regularization term imposes smoothness on these changes in a sparse manner such that fine details are extracted while effects like speckle noise are reduced. The proposed method, sparsity-driven change detection (SDCD), employs accurate approximation techniques for the minimization of the cost function since data fidelity terms are not convex and the employed l(1)-norm TV regularization term is not differentiable. The performance of the SDCD is shown on real-world SAR images obtained from various SAR sensors.Article Citation - WoS: 5Citation - Scopus: 5Vessel segmentation in MRI using a variational image subtraction approach(2014) Saran, Ayşe Nurdan; Nar, Fatih; Saran, Ayşe Nurdan; Nar, Fatih; Saran, Murat; Saran, Murat; 20868; 17753; Bilgisayar Mühendisliği; MatematikVessel segmentation is important for many clinical applications, such as the diagnosis of vascular diseases, the planning of surgery, or the monitoring of the progress of disease. Although various approaches have been proposed to segment vessel structures from 3-dimensional medical images, to the best of our knowledge, there has been no known technique that uses magnetic resonance imaging (MRI) as prior information within the vessel segmentation of magnetic resonance angiography (MRA) or magnetic resonance venography (MRV) images. In this study, we propose a novel method that uses MRI images as an atlas, assuming that the patient has an MRI image in addition to MRA/MRV images. The proposed approach intends to increase vessel segmentation accuracy by using the available MRI image as prior information. We use a rigid mutual information registration of the MRA/MRV to the MRI, which provides subvoxel accurate multimodal image registration. On the other hand, vessel segmentation methods tend to mostly suffer from imaging artifacts, such as Rician noise, radio frequency (RF) inhomogeneity, or partial volume effects that are generated by imaging devices. Therefore, this proposed method aims to extract all of the vascular structures from MRA/MRI or MRV/MRI pairs at the same time, while minimizing the combined effects of noise and RF inhomogeneity. Our method is validated both quantitatively and visually using BrainWeb phantom images and clinical MRI, MRA, and MRV images. Comparison and observer studies are also realized using the BrainWeb database and clinical images. The computation time is markedly reduced by developing a parallel implementation using the Nvidia compute unified device architecture and OpenMP frameworks in order to allow the use of the method in clinical settings.