Browsing by Author "Tascioglu, Yigit"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 2Citation - Scopus: 1Exploring the potential of artificial intelligence tools in enhancing the performance of an inline pipe turbine(Sage Publications Ltd, 2024) Celebioglu, Kutay; Ayli, Ece; Cetinturk, Huseyin; Tascioglu, Yigit; Aradag, Selin; 265836; Makine MühendisliğiIn this study, investigations were conducted using computational fluid dynamics (CFD) to assess the applicability of a Francis-type water turbine within a pipe. The objective of the study is to determine the feasibility of implementing a turbine within a pipe and enhance its performance values within the operating range. The turbine within the pipe occupies significantly less space in hydroelectric power plants since a spiral casing is not used to distribute the flow to stationary vanes. Consequently, production and assembly costs can be reduced. Hence, there is a broad scope for application, particularly in small and medium-scale hydroelectric power plants. According to the results, the efficiency value increases on average by approximately 1.5% compared to conventional design, and it operates with higher efficiencies over a wider flow rate range. In the second part of the study, machine learning was employed for the efficiency prediction of an inline-type turbine. An appropriate Artificial Neural Network (ANN) architecture was initially obtained, with the Bayesian Regularization training algorithm proving to be the best approach for this type of problem. When the suitable ANN architecture was utilized, the prediction was found to be in good agreement with CFD, with an root mean squared error value of 0.194. An R2 value of 0.99631 was achieved with the appropriate ANN architecture.Article Machine Learning-Based Efficiency Prediction of Francis Type Hydraulic Turbines Through Comprehensive Performance Testing(Sage Publications Ltd, 2025) Besni, Ferdi; Buyuksolak, Fevzi; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; Tascioglu, YigitIn this study, the rehabilitation works carried out for the KEPEZ HPP, which has been in operation for over 50 years in Antalya, Turkey, is discussed. Within this scope, the existing turbine components are optimized using the CFD method, and a design that provides higher performance at the required flow rate and head is obtained. Analyses are performed using numerical methods to examine the behavior of the new turbine at different flow rates and heads, and a hill chart is created. In the second stage, model tests are carried out at the TOBB ETU HYDRO Water Turbine Design and Test Center in accordance with IEC60193 standards. Different ML methods are examined for their ability to predict turbine performance, following the development of the hydrid CFD-Experimental methodology. According to the authors knowledge, there is no study in the literature that combines experimental, numerical, and ML methods for turbines, and ML methods have not been applied before for Francis-type turbine performance prediction. The outcomes of the study contribute to the advancement of turbine design and optimization processes, offering valuable insights for the successful implementation of rehabilitation projects in the hydropower sector.Article Citation - WoS: 3Citation - Scopus: 2Mitigating Cavitation Effects on Francis Turbine Performance: a Two-Phase Flow Analysis(Pergamon-elsevier Science Ltd, 2025) Altintas, Burak; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; Makine MühendisliğiDue to their ability to operate over a wide range of flow rates and generate high power, Francis turbines are the most widely used of hydroturbine type. Hydraulic turbines, are designed for specific flow and head conditions tailored to site conditions. However, Francis turbines can also be operated outside of design conditions due to varying flow and head values. Operation outside of design conditions can lead to cavitation. In this study, singlephase steady-state an alyses were conducted initially to examine cavitation in detail, followed by two-phase transient analyses. The results obtained from these analyses were compared to determine the cavitation characteristics of the designed turbine. The steady-state simulation results indicate the occurrence of cavitation, including traveling bubble and draft tube cavitation, under overload operating conditions. However, these cavitation characteristics are not observed in the two-phase transient simulation results under the same operating conditions. Additionally, the turbine efficiency is predicted to be higher in the transient simulation results. This is attributed to the frozen rotor interface used in the steady-state simulations, which over predicts flow irregularities. The reduced flow irregularities in the transient results have resulted in lower cavitation and losses, leading to higher predicted turbine efficiency.