Browsing by Author "Trujillo, Juan J."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Editorial Citation - Scopus: 2Advanced Theoretical and Applied Studies of Fractional Differential Equations(Hindawi Publishing Corporation, 2013) Trujillo, Juan J.; Ahmad, Bashir; Baleanu, Dumitru; 56389; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiEditorial Advanced Theoretical and Applied Studies of Fractional Differential Equations 2013(Hindawi Publishing Corporation, 2014) Baleanu, Dumitru; Trujillo, Juan J.; Ahmad, Bashir; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiArticle Citation - WoS: 2Citation - Scopus: 2Exact Solutions of a Class of Fractional Hamiltonian Equations Involving Caputo Derivatives(Iop Publishing Ltd, 2009) Trujillo, Juan J.; Baleanu, Dumitru; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiThe fractional Hamiltonian equations corresponding to the Lagrangians of constrained systems within Caputo derivatives are investigated. The fractional phase space is obtained and the exact solutions of some constrained systems are obtained.Article Citation - WoS: 101Citation - Scopus: 117On Exact Solutions of a Class of Fractional Euler-Lagrange Equations(Springer, 2008) Trujillo, Juan J.; Baleanu, Dumitru; 56389; 02.02. Matematik; 02. Fen-Edebiyat Fakültesi; 01. Çankaya ÜniversitesiIn this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where D-c(a)t(alpha) x(t)) and 0 < alpha < 1, such that the following is the corresponding Euler-Lagrange D-t(b)alpha(D-c(a)t(alpha))x(t) + b(t, x(t)) ((c)(a)D(t)(alpha)x(t)) + f(t, x(t)) = 0. (1) At last, exact solutions for some Euler-Lagrange equations are presented. In particular, we consider the following equations D-t(b)alpha(D-c(a)t(alpha))x(t) = lambda x(t) (lambda is an element of R), (2) D-t(b)alpha(D-c(a)t(alpha))x(t) + g(t) D-c(a)t(alpha) x(t) = f(t), (3) where g(t) and f (t) are suitable functions.
