Browsing by Author "Wakif, Abderrahim"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation Count: Khan, Umair...et al. (2020). "Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction", Heliyon, Vol. 6, No. 7.Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction(2020) Khan, Umair; Zaib, A.; Baleanu, Dumitru; Sheikholeslami, M.; Wakif, Abderrahim; 56389The mathematical modeling and numerical simulation are conferred to offer the novel perception of binary chemical reaction with an activation energy aspect on magneto flow comprising Cross liquid inspired by a moving wedge. The influences of Soret and Dufour are also presented. The similarity procedure is utilized to modify the leading PDEs into a non-linear system of ODEs and then analyzed through a significant technique namely bvp4c based on the collocation method. The impacts of varying distinct parameters under the temperature and the velocity distribution are explored and discussed with the support of the graphs. The outcomes indicate that the multiple results are attained for a specific amount of shrinking/stretching constraint. Furthermore, the Weissenberg number reduces the skin factor and speed up the heat and mass transport rate in the lower and upper branch solutions. Also, an assessment of current results with earlier published literature is made in the limiting case.Article Citation Count: Khan, Umair...et al. (2020). "Mixed convective radiative flow through a slender revolution bodies containing molybdenum-disulfide graphene oxide along with generalized hybrid nanoparticles in porous media", Crystals, Vol. 10, No. 9, pp. 1-18.Mixed convective radiative flow through a slender revolution bodies containing molybdenum-disulfide graphene oxide along with generalized hybrid nanoparticles in porous media(2020) Khan, Umair; Zaib, Aurang; Sheikholeslami, Mohsen; Wakif, Abderrahim; Baleanu, Dumitru; 56389The current framework tackles the buoyancy flow via a slender revolution bodies comprising Molybdenum-Disulfide Graphene Oxide generalized hybrid nanofluid embedded in a porous medium. The impact of radiation is also provoked. The outcomes are presented in this analysis to examine the behavior of hybrid nanofluid flow (HNANF) through the cone, the paraboloid, and the cylinder-shaped bodies. The opposing flow (OPPF) as well as the assisting flow (ASSF) is discussed. The leading flow equations of generalized hybrid nanoliquid are worked out numerically by utilizing bvp4c solver. This sort of the problem may meet in the automatic industries connected to geothermal and geophysical applications where the sheet heat transport occurs. The impacts of engaging controlled parameters of the transmuted system on the drag force and the velocity profile are presented through the graphs and tables. The achieved outcomes suggest that the velocity upsurges due to the dimensionless radius of the slender body parameter in case of the assisting flow and declines in the opposing flow. Additionally, an increment is observed owing to the shaped bodies as well as in type A nanofluid and type B hybrid nanofluid. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Article Citation Count: Khan, Umair...et al. (2020). "Numerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory", Alexandria Engineering Journal, Vol. 59, No. 6, pp. 4851-4864.Numerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory(2020) Khan, Umair; Shafiq, Anum; Zaib, A.; Wakif, Abderrahim; Baleanu, Dumitru; 56389In this study, the feature of stagnant Sutterby nanofluid towards a wedge surface is analyzed under the impact of a variable external magnetic field. Instead of the traditional Fourier law, the realistic Cattaneo-Christov principle is incorporated in the energy equation to scrutinize the heat flow pattern by utilizing the non-homogeneous two-phase nanofluid model. The constitutive flow rules are transfigured into a nonlinear differential system via feasible mathematical alterations. Methodologically, the bvp4c numerical procedure is employed properly to derive accurate numerical solutions for the present boundary flow problem. By varying the values of the involved parameters of the governing equations, the behaviors of temperature, velocity, and concentration profiles are described graphically and interpreted thoroughly. In this attempt, the major finding is that the magnetic field accelerates the motion and declines the temperature and concentration fields in the performance of suction and injection. Moreover, the nanofluid parameters upsurge the heat transfer mechanism and decline the mass transport and the effect of drag forces in both situations of wall-through flow (i.e., suction and injection effects). Furthermore, the nanofluid concentration profile decays due to the strengthening in the thermophoresis phenomenon. As a useful application, the magnetic function trend along with the thermophoresis diffusion on the nanofluid flow field may be exerted broadly in the field of aerosol technology. © 2020 Faculty of Engineering, Alexandria University