Bilgisayar Mühendisliği Bölümü Tezleri
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/58
Browse
Browsing Bilgisayar Mühendisliği Bölümü Tezleri by Department "Fen Bilimleri Enstitüsü / Bilgisayar Mühendisliği Ana Bilim Dalı / Bilgi Teknolojileri Bilim Dalı"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Duygu Analizinde Makine Öğrenimi Yaklaşımı: Yapay Zeka Sohbet Robotlarına İlişkin Kamu Algısından Elde Edilen İçgörüler(2025) Şahin, Zeki; Şener, İrgeSon yıllarda, yapay zeka ve doğal dil işleme teknolojilerindeki gelişmeler, kullanıcılarla etkileşim kuran sohbet botlarının yaygın olarak benimsenmesini sağlamıştır. ChatGPT ve Gemini AI gibi büyük dil modelleri, geniş bir kullanıcı kitlesi tarafından günlük etkileşimlerde kullanılmaktadır. Ancak, bu modellerin kamuoyundaki algısını ve kullanıcı duyarlılığını anlamak için kapsamlı bir duygu analizi gerekmektedir. Bu çalışma, Twitter'da ChatGPT ve Gemini AI hakkında yapılan paylaşımları analiz ederek, bu yapay zeka modellerinin kullanıcılar tarafından nasıl algılandığını belirlemeyi amaçlamaktadır. Çalışmada, kural tabanlı duygu analizi (SpaCy ve TextBlob) ve derin öğrenme tabanlı duygu analizi (BERTweet) omak üzere iki farklı duygu analizi yöntemi karşılaştırılmıştır. Yapılan analizler sonucunda, BERTweet'in duygu sınıflandırmasında daha başarılı olduğu gözlemlenmiş ve analiz sürecinde referans modeli olarak kabul edilmiştir. Daha sonra, Random Forest, Support Vector Machine (SVM), Logistic Regression ve LightGBM gibi çeşitli makine öğrenimi modelleri kullanılarak duygu tahminleri yapılmıştır. Bu modeller, DistilBERT, RoBERTa ve GloVe gibi üç farklı gömme yöntemiyle eğitilmiştir. Sonuçlar, Logistic Regression ve RoBERTa bileşeninin en yüksek doğruluk oranını sağladığını (%81,8) ortaya koymuştur. Çalışmanın temel bulguları şunlardır: 1. ChatGPT ve Gemini AI'nin duygu dağılımı farklılık göstermektedir. ChatGPT hakkında daha fazla negatif içerik bulunurken, Gemini AI'nin daha fazla olumlu içerikle ilişkilendirildiği gözlemlenmiştir. 2. En yaygın negatif geri bildirimler, ChatGPT için bilgi doğruluğu ve kullanım kısıtlamaları, Gemini AI için ise Google ekosistemine entegrasyon ve güvenilirlik konuları olmuştur. 3. Kelime bulutu ve frekans analizleri, her iki modelle ilgili duygu temalarını belirlemede önemli içgörüler sağlamıştır. Elde edilen sonuçlar, yapay zeka tabanlı sohbet botlarının geliştirilmesi, kullanıcı memnuniyetinin artırılması ve gelecek nesil yapay zeka sistemlerinin tasarımına yönelik değerli bilgiler sunmaktadır. Gelecek çalışmalar, zaman serisi analizi, çok modlu duygu analizi ve coğrafi bazlı kullanıcı eğilimleri gibi daha derinlemesine araştırmaları içerebileceği değerlendirilmektedir.