Fen - Edebiyat Fakültesi
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/1
Browse
Browsing Fen - Edebiyat Fakültesi by Department "Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik - Bilgisayar Bölümü"
Now showing 1 - 20 of 213
- Results Per Page
- Sort Options
Article A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel(Pushpa Publishing House, 2018) Baleanu, Dumitru; Shiri, B.; Srivastava, H. M.; Al Qurashi, Maysaa Mohamed; 56389In this paper, we solve a system of fractional differential equations within a fractional derivative involving the Mittag-Leffler kernel by using the spectral methods. We apply the Chebyshev polynomials as a base and obtain the necessary operational matrix of fractional integral using the Clenshaw-Curtis formula. By applying the operational matrix, we obtain a system of linear algebraic equations. The approximate solution is computed by solving this system. The regularity of the solution investigated and a convergence analysis is provided. Numerical examples are provided to show the effectiveness and efficiency of the method.Article A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation(Springer Open, 2017) Baleanu, Dumitru; 56389In this paper, we propose an efficient numerical scheme for the approximate solution of a time fractional diffusion-wave equation with reaction term based on cubic trigonometric basis functions. The time fractional derivative is approximated by the usual finite difference formulation, and the derivative in space is discretized using cubic trigonometric B-spline functions. A stability analysis of the scheme is conducted to confirm that the scheme does not amplify errors. Computational experiments are also performed to further establish the accuracy and validity of the proposed scheme. The results obtained are compared with finite difference schemes based on the Hermite formula and radial basis functions. It is found that our numerical approach performs superior to the existing methods due to its simple implementation, straightforward interpolation and very low computational cost. A convergence analysis of the scheme is also discussed.Article A fixed point theorem on multiplicative metric space with integral-type inequality(Journal Mathematics & Computer Science-Jmcs, 2018) Baleanu, Dumitru; Khan, Hasib; Baleanu, Dumitru; Jafari, Hossein; Khan, Tahir Saeed; Alqurashi, Maysaa; 56389In this paper, we prove fixed point theorems (FPTs) on multiplicative metric space (MMS) (X, triangle) by the help of integral-type contractions of self-quadruple mappings (SQMs), i.e., for p(1), p(2), p(3), p(4) : X -> R. For this, we assume that the SQMs are weakly compatible mappings and the pairs (p(1), p(3)) and (p(2), p(4)) satisfy the property (CLRp3p4). Further, two corollaries are produced from our main theorem as special cases. The novelty of these results is that for the unique common fixed point (CFP) of the SQMs p(1), p(2), p(3), p(4), we do not need to the assumption of completeness of the MMS (X, triangle). These results generalize the work of Abdou, [A. A. N. Abdou, J. Nonlinear Sci. Appl., 9 (2016), 2244-2257], and many others in the available literature.Article A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs(Univ Szeged, Bolyai Institute, 2017) Baleanu, Dumitru; Fernandez, Arran; 56389We present and prove a new generalisation of the Malgrange-Ehrenpreis theorem to fractional partial differential equations, which can be used to construct fundamental solutions to all partial differential operators of rational order and many of arbitrary real order. We demonstrate with some examples and mention a few possible applications.Article A Gronwall inequality via the generalized proportional fractional derivative with applications(Springer Open, 2019) Alzabut, Jehad; Abdeljawad, Thabet; Jarad, Fahd; Sudsutad, Weerawat; 234808In this paper, we provide a new version for the Gronwall inequality in the frame of the generalized proportional fractional derivative. Prior to the main results, we introduce the generalized proportional fractional derivative and expose some of its features. As an application, we accommodate the newly defined derivative to prove the uniqueness and obtain a bound in terms of Mittag-Leffler function for the solutions of a nonlinear delay proportional fractional system. An example is presented to demonstrate the applicability of the theory.Article A linearization-based approach of homotopy analysis method for non-linear time-fractional parabolic PDEs(Wiley, 2019) Baleanu, Dumitru; Baleanu, Dumitru; 56389In this paper, a novel approach, namely, the linearization-based approach of homotopy analysis method, to analytically treat non-linear time-fractional PDEs is proposed. The presented approach suggests a new optimized structure of the homotopy series solution based on a linear approximation of the non-linear problem. A comparative study between the proposed approach and standard homotopy analysis approach is illustrated by solving two examples involving non-linear time-fractional parabolic PDEs. The performed numerical simulations demonstrate that the linearization-based approach reduces the computational complexity and improves the performance of the homotopy analysis method.Article A Mechanical Model Based on Conformal Strain Energy and Its Application to Bending and Buckling of Nanobeam Structures(ASME, 2019) Baleanu, Dumitru; Sumelka, Wojciech; Baleanu, Dumitru; 56389In the present work, a nonlocal model based on the conformal strain energy, utilizing the conformable derivative definition, has been obtained. The model has two additional free parameters compared to the classical (local) mechanical formulations. The first one specifies the amount of the integer and the noninteger gradient of strain in the strain energy relation, and the second one controls the order of the strain derivatives in the conformable energy relation. The obtained governing (nonlinear) equation has been solved by the Galerkin method and the effects of both free parameters have been shown. As a case study, the bending and buckling of nanobeam structures has been studied.Article A method for solving nonlinear Volterra's population growth model of noninteger order(Sprınger International Publishing, 2017) Baleanu, Dumitru; Agheli, Bahram; Firozja, M. Adabitabar; Al Qurashi, Maysaa Mohamed; 56389Many numerical methods have been developed for nonlinear fractional integro-differential Volterra's population model (FVPG). In these methods, to approximate a function on a particular interval, only a restricted number of points have been employed. In this research, we show that it is possible to use the fuzzy transform method (F-transform) to tackle with FVPG. It makes the F-transform preferable to other methods since it can make full use of all points on this interval. We also make a comparison showing that this method is less computational and is more convenient to be utilized for coping with nonlinear integro-differential equation (IDEs), fractional nonlinear integro-differential equation (FIDEs), and fractional ordinary differential equations (FODEs).Article A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets(MDPI, 2019) Baleanu, Dumitru; Jassim, Hassan Kamil; 56389In this paper, we apply a new technique, namely, the local fractional Laplace homotopy perturbation method (LFLHPM), on Helmholtz and coupled Helmholtz equations to obtain analytical approximate solutions. The iteration procedure is based on local fractional derivative operators (LFDOs). This method is a combination of the local fractional Laplace transform (LFLT) and the homotopy perturbation method (HPM). The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.Article A Modification Fractional Variational Iteration Method For Solving Non-Linear Gas Dynamic and Coupled Kdv Equations Involving Local Fractional Operators(Vinca Inst Nuclear Sci, 2018) Baleanu, Dumitru; Jassim, Hassan Kamil; Khan, Hasib; 56389In this paper, we apply a new technique, namely local fractional variational iteration transform method on homogeneous/non-homogeneous non-linear gas dynamic and coupled KdV equations to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative and integral operators. This method is the combination of the local fractional Laplace transform and variational iteration method. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.Article A New Analytical Technique to Solve System of Fractional-Order Partial Differential Equations(IEEE-INST Electrical Electronics Engineers INC, 2019) Baleanu, Dumitru; Khan, Hassan; Farooq, Umar; Baleanu, Dumitru; Kumam, Poom; 56389In this research article, a new analytical technique is implemented to solve system of fractional-order partial differential equations. The fractional derivatives are carried out with the help of Caputo fractional derivative operator. The direct implementation of Mohand and its inverse transformation provide sufficient easy less and reliability of the proposed method. Decomposition method along with Mohand transformation is proceeded to attain the analytical solution of the targeted problems. The applicability of the suggested method is analyzed through illustrative examples. The solutions graph has the best contact with the graphs of exact solutions in paper. Moreover, the convergence of the present technique is sufficiently fast, so that it can be considered the best technique to solve system of nonlinear fractional-order partial differential equations.Article A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence(Amer Inst Physics, 2019) Baleanu, Dumitru; Ghanbari, Behzad; Baleanu, Dumitru; 56389The main objective of this research is to investigate a new fractional mathematical model involving a nonsingular derivative operator to discuss the clinical implications of diabetes and tuberculosis coexistence. The new model involves two distinct populations, diabetics and nondiabetics, while each of them consists of seven tuberculosis states: susceptible, fast and slow latent, actively tuberculosis infection, recovered, fast latent after reinfection, and drug-resistant. The fractional operator is also considered a recently introduced one with Mittag-Leffler nonsingular kernel. The basic properties of the new model including non-negative and bounded solution, invariant region, and equilibrium points are discussed thoroughly. To solve and simulate the proposed model, a new and efficient numerical method is established based on the product-integration rule. Numerical simulations are presented, and some discussions are given from the mathematical and biological viewpoints. Next, an optimal control problem is defined for the new model by introducing four control variables reducing the number of infected individuals. For the control problem, the necessary and sufficient conditions are derived and numerical simulations are given to verify the theoretical analysis.Article A new class of 2m-point binary non-stationary subdivision schemes(Springer Open, 2019) Baleanu, Dumitru; Ullah, Zafar; Bari, Mehwish; Nisar, Kottakkaran Sooppy; Al-Qurashi, Maysaa M.; Baleanu, Dumitru; 56389A new class of 2m-point non-stationary subdivision schemes (SSs) is presented, including some of their important properties, such as continuity, curvature, torsion monotonicity, and convexity preservation. The multivariate analysis of subdivision schemes is extended to a class of non-stationary schemes which are asymptotically equivalent to converging stationary or non-stationary schemes. A comparison between the proposed schemes, their stationary counterparts and some existing non-stationary schemes has been depicted through examples. It is observed that the proposed SSs give better approximation and more effective results.Article A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws(Pergamon-Elsevier Science LTD, 2019) Baleanu, Dumitru; Singh, Jagdev; Tanwar, Kumud; Baleanu, Dumitru; 56389The present article deals with the exothermic reactions model having constant heat source in the porous media with strong memory effects. The Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional operators are used to induce memory effects in the mathematical modeling of exothermic reactions. The patterns of heat flow profiles are very essential for heat transfer in every kind of the thermal insulation. In the present investigation, we focus on the driving force problem due to the fact that temperature gradient is assumed. The mathematical equation of the problem is confined in a fractional energy balance equation (FEBE), which furnishes the temperature portrayal in conduction state having uniform heat source on steady state. The fractional Laplace decomposition technique is utilized to obtain the numerical solution of the corresponding FEBE describing the exothermic reactions. Some numerical results for the fractional exothermic reactions model are presented through graphs and tables. (C) 2019 Elsevier Ltd. All rights reserved.Article A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator(Amer Inst Physics, 2019) Baleanu, Dumitru; Jajarmi, Amin; Sajjadi, S. S.; Mozyrska, D.; 56389In this paper, we present a new fractional-order mathematical model for a tumor-immune surveillance mechanism. We analyze the interactions between various tumor cell populations and immune system via a system of fractional differential equations (FDEs). An efficient numerical procedure is suggested to solve these FDEs by considering singular and nonsingular derivative operators. An optimal control strategy for investigating the effect of chemotherapy treatment on the proposed fractional model is also provided. Simulation results show that the new presented model based on the fractional operator with Mittag-Leffler kernel represents various asymptomatic behaviors that tracks the real data more accurately than the other fractional- and integer-order models. Numerical simulations also verify the efficiency of the proposed optimal control strategy and show that the growth of the naive tumor cell population is successfully declined. Published under license by AIP Publishing.Article A New Fractional Model For Convective Straight Fins With Temperature-Dependent Thermal Conductivity(Vinca Inst Nuclear Sci, 2018) Baleanu, Dumitru; Singh, Jagdev; Baleanu, Dumitru; 56389The key aim of this work is to present a new non-integer model for convective straight fins with temperature-dependent thermal conductivity associated with Caputo-Fabrizio fractional derivative. The fractional energy balance equation is solved by using homotopy perturbation method coupled with Laplace transform method. The efficiency of straight fin has been derived in terms of thermo-geometric fin parameter. The numerical results derived by the application of suggested scheme are demonstrated graphically. The subsequent correlation equations are very helpful for thermal design scientists and engineers to design straight fins having temperature-dependent thermal conductivity.Article A new fractional model for giving up smoking dynamics(Springer Open, 2017) Baleanu, Dumitru; Kumar, Devendra; Al Qurashi, Maysaa Mohamed; Baleanu, Dumitru; 56389The key purpose of the present work is to examine a fractional giving up smoking model pertaining to a new fractional derivative with non-singular kernel. The numerical simulations are conducted with the aid of an iterative technique. The existence of the solution is discussed by employing the fixed point postulate, and the uniqueness of the solution is also proved. The effect of various parameters is shown graphically. The numerical results for the smoking model associated with the new fractional derivative are compared with numerical results for a smoking model pertaining to the standard derivative and Caputo fractional derivative.Article A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying(Springer Open, 2019) Baleanu, Dumitru; Singh, Jagdev; Al Qurashi, Maysaa Mohamed; Baleanu, Dumitru; 56389The present paper deals with a new fractional SIRS-SI model describing the transmission of malaria disease. The SIRS-SI malaria model is modified by using the Caputo-Fabrizio fractional operator for the inclusion of memory. We also suggest the utilization of vaccines, antimalarial medicines, and spraying for the treatment and control of the malaria disease. The theory of fixed point is utilized to examine the existence of the solution of a fractional SIRS-SI model describing spreading of malaria. The uniqueness of the solution of SIRS-SI model for malaria is also analyzed. It is shown that the treatments have great impact on the dynamical system of human and mosquito populations. The numerical simulation of fractional SIRS-SI malaria model is performed with the aid of HATM and Maple packages to show the effect of different parameters of the treatment of malaria disease. The numerical results for fractional SIRS-SI malaria model reveal that the recommended approach is very accurate and effective.Article A new iterative algorithm on the time-fractional Fisher equation: Residual power series method(Sage Publications INC, 2017) Baleanu, Dumitru; 56389In this article, the residual power series method is used to solve time-fractional Fisher equation. The residual power series method gets Maclaurin expansion of the solution. The solutions of present equation are computed in the shape of quickly convergent series with quickly calculable fundamentals using mathematica software package. Explanation of the method is given by graphical consequences and series solutions are made use of to represent our solution. The found consequences show that technique is a power and efficient method in conviction of solution time-fractional Fisher equation.Article A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo-Fabrizio derivative(Springer International Publishing AG, 2017) Baleanu, Dumitru; Mousalou, Asef; Rezapour, Shahram; 56389We present a new method to investigate some fractional integro-differential equations involving the Caputo-Fabrizio derivation and we prove the existence of approximate solutions for these problems. We provide three examples to illustrate our main results. By checking those, one gets the possibility of using some discontinuous mappings as coefficients in the fractional integro-differential equations.