Bilgi Teknolojisi Bölümü Tezleri
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/298
Browse
Browsing Bilgi Teknolojisi Bölümü Tezleri by Department "Fen Bilimleri Enstitüsü / Bilgi Teknolojileri Ana Bilim Dalı / Bilgi Teknolojileri Bilim Dalı"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Master Thesis Bir Seyahat Öneri Sisteminde Modeller, Veri Stratejileri ve Hiperparametre Ayarını Keşfetmek(2024) Erkal, Necati; Saran, Ayşe Nurdan; Bilgisayar MühendisliğiÖneri sistemlerinin önemi son dönemde giderek artmaktadır. Verilerin karmaşıklığı nedeniyle kullanıcıların beğenebileceği bir öneride bulunmak giderek zorlaşıyor. Özellikle seyehat öneri sistemlerinde bir sonraki şehri önermek önemli ve zor bir görevdir. Çeşitli çalışmalara göre derin öğrenmeyi öneri sistemlerinde kullanmak önerilerin doğruluğunu arttırmaya ve karmaşık verileri ele almaya yardımcı olmaktadır. Bu tez önerilen derin öğrenme destekli seyehat öneri sistemi için yeni mimarileri, veri ve hiperparametre ayarlama tekniklerini ortaya koymaktadır. NVIDIA ekibinin WSDM WebTour 2021 yarışmasında kazanan öneri sistemi bu çalışmada kullanıldı. Kazanan çözümü anlamak için algoritma ve veri seti analiz edilip, çalışmayı geliştirmek için yeni çözümler önerilmiştir.Master Thesis Matris Çözümlemesi Tabanlı Öneri Sistemlerinin Geliştirilmesi: Seyahat Öneri Sistemleri Üzerine Karşılaştırmalı Bir Çalışma(2024) Mat, Abdullah Uğur; Saran, Ayşe Nurdan; Bilgisayar MühendisliğiÖneri sistemlerinin etkisi ve yararlılığı artmaya devam ettikçe, çeşitli uygulamalardaki önemi giderek daha belirgin hale gelmektedir. Bu nedenle, artan talep ve beklentileri karşılayacak hem verimli hem de yüksek doğruluğa sahip öneri sistemlerinin tasarımı ve uygulanması hayati önem taşımaktadır. Bu çalışma, bir seyahat tahmini öneri sistemleri yarışmasında birincilik ödülü alan bir modele odaklanmaktadır. Amacı, kullanılan modelin veri seti ile olan korelasyonu ve uygulanan azaltılmış veri setinin başarı oranı üzerindeki etkisinin model performansını etkileyip etkilemediğini araştırmaktır. Kaynak kullanımını azaltmak amacıyla veri setinde değişiklikler yapılmıştır. Genelde kullanılan yöntemlerin aksine, veri seti rastgele ve seçici azaltma yöntemleri kullanılarak beşte bir oranına kadar azaltılmış ve sonuçlar gözlemlenmiştir. Veri setinin rastgele azaltılması başarı oranında düşüşe neden olurken, yöntembilimsel azaltma yani seçimli azaltma başarı oranını önemli ölçüde artırmıştır. Orijinal modelde kullanılan derin öğrenme algoritmaları yerine, aynı ilkeleri kullanan başka bir algoritma olan Long Short-Term Memory (LSTM) kullanılmıştır. Gated Recurrent Unit (GRU) ve LSTM algoritmalarının veri seti üzerindeki etkileri de araştırılmıştır. Bu veri setleri için GRU algoritması, LSTM'den daha doğru sonuçlar üretmiştir. Embedding katmanlarında yeni modeller geliştirilmiş ve sonuçlar gözlemlenmiştir. Ayrıca, model tarafından kullanılan optimizatör değiştirilmiş ve diğer optimizatörlerin performansı değerlendirilmiştir. Optimizatörler, donanım üzerinde geniş bir yelpazede etkiler göstermiştir. Orjinal modelin elde ettiği başarı 0.5664 iken bu çalışmada yapılan deneylerde en yüksek ve en muteber 0.6654 başarıma ulaşılmıştır. Modellerde, optimizatörlerde ve özellik mühendisliğinde yapılan değişikliklerin etkili öneri sistemlerinin sürdürülebilirliği açısından yararlı olabileceğini savunuyoruz.