PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/8650
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by Journal "Journal of the Optical Society of America A-Optics Image Science and Vision"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Intensity Fluctuations of Higher-Order Laser Modes in Jet Engine Exhaust Turbulence(Optica Publishing Group, 2025) Baykal, Yahya Kemal; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiIntensity fluctuations quantified by the scintillation index are evaluated in jet engine exhaust turbulence when higher-order laser modes are used in optical wireless communication links. The jet engine exhaust turbulence power spectrum, modified by low-pass and high-pass filters, is employed. Intensity fluctuations are evaluated against the link length, structure constant, wave number (inverse of wavelength) (i.e., against turbulence strength), source size, and jet engine exhaust turbulence parameters. It is found that higher-order laser modes are better at mitigating the scintillations. Jet engine exhaust turbulence parameters are found to affect scintillations substantially. (c) 2025 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.Article Citation - WoS: 1Citation - Scopus: 1Propagation of Higher-Order Annular Gaussian Beams in Biological Tissues(Optica Publishing Group, 2025) Arpali, Serap Altay; Baykal, Yahya Kemal; 06.02. Elektronik ve Haberleşme Mühendisliği; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe propagation characteristics of a higher-order annular Gaussian (HOAG) beam in biological tissue turbulence are investigated. Average intensity at the receiver plane is found when the HOAG source field is used as excitation. The effects of the HOAG beam on different tissue types of the upper dermis (human), liver parenchyma (mouse), intestinal epithelium (mouse), and deep dermis (mouse) are studied. Variations of the average intensity versus the source and medium parameters such as the strength coefficient of the refractive-index fluctuations, propagation distance, wavelength, and beam size are presented. The results show that all modes of the HOAG beam can successively transmit beam energy at different levels of turbulence for all tissue types. At the same turbulence strength, HOAG beams having larger mode numbers transmit higher intensity to receivers than the modes with smaller mode orders, which is valid for all the examined tissue types. As the strength of tissue turbulence increases, the HOAG beam slowly turns into a pure Gaussian beam. For the different tissue types, the highest beam intensity at the receiver was observed for the deep dermis (mouse) tissue type. Despite the change in wavelength, refractive-index fluctuations, and source beam size, the highest beam transmission through the tissue in a turbulent environment was also observed for this same tissue type. This research may be useful in understanding the fundamentals of lighttissue interaction of HOAG laser beams, which may improve noninvasive disease detection and therapy methods through tissue in biophotonic technologies. (c) 2025 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
