Elektrik Elektronik Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/410
Browse
Browsing Elektrik Elektronik Mühendisliği Bölümü by Language "en"
Now showing 1 - 20 of 209
- Results Per Page
- Sort Options
Article A Novel Analytical Method for Throughput Calculation of Wireless Ad-Hoc Networks Running Different Routing Algorithms(2018) Preveze, Barbaros; 17573; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiBecause of the increasing number of internet related applications, the role of total router transmission delay became much more important for the service quality. For this purpose, the tunneling techniques have been widely used especially for real time multimedia transmission to have less number of route constructions and to be able to forward each packet at each router without the need of reaching the upper OSI (Open Systems Interconnection) layers. But, in mobile networks, since the network experience with more changes in traffic conditions and node locations, tunnels will be reconstructed for many times and some extra delay will occur to reconstruct these tunnels. In this work, the place of the tunneling algorithm is taken by the well-known MPLS (Multi-Protocol Label Switching) protocol and for confirmation the throughput calculations are made by considering two different routing algorithms, one of which is AEABR algorithm proposed in [1] (shown in [2] that it improves the system throughput w.r.t Fastest path Routing algorithm [3] for various vehicular velocities), and the other one is Fastest Path routing algorithm [3]. In this work a novel analytical method for throughput calculation of wireless ad-hoc networks running aforementioned routing algorıthms is proposed including the effects of extra delay caused by extra Route Reconstructions (RRC).Article Citation - WoS: 4Citation - Scopus: 5Accurate Method To Calculate Noise Figure in a Low Noise Amplifier: Quantum Theory Analysis(Elsevier Sci Ltd, 2022) Salmanogli, Ahmad; Gecim, H. Selcuk; 182579; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiIn this study, a low-noise amplifier is quantum-mechanically analyzed to study the behavior of the noise figure. The analysis view has been changed from classic to quantum, because using quantum theory produces some degrees of freedom, which may be ignored when a circuit is analyzed using classical theory. For this purpose, the Lagrangian is initially derived by considering the related nonlinearity of the transistor, and then using the Legendre transformation and canonical quantization procedure, the quantum Hamiltonian is derived. As an interesting point of this study, the low-noise amplifier is deliberately considered as two oscillators connecting to each other to share the photonic modes between them; accordingly, the voltage and current as measurable observations and the noise figure as a critical quantity in a low-noise amplifier are theoretically expressed in terms of the oscillator's mean photon number. The main goal of this work is to study quantities such as the noise figure in a sufficient detail using quantum theory. In addition, as an advantage of this theory, one can control and manipulate the noise figure only by manipulation of the oscillator's mean photon number and coupling it between two oscillators. Finally, the circuit is classically designed and simulated to verify the derived results using quantum theory. The comparison results show that there is a partial consistency between the two approaches; as the frequency increases, the noise figure becomes minimized at a particular frequency.Article Citation - WoS: 7Citation - Scopus: 6Adaptive Optics Correction of Beam Spread in Biological Tissues(Pergamon-elsevier Science Ltd, 2022) Baykal, Yahya; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiBeam spread in turbulent biological tissues is examined when the tissue is excited with a collimated Gaussian laser beam. Adaptive optics correction is applied to the beam spread in the form of piston only (P Only), tilt only (T Only), piston + tilt (P + T), and the reduction in the beam spread is evaluated as com-pared to the no adaptive optics (No AO) corrected beam spread. No AO and adaptive optics corrected beam spread are expressed for various biological tissue types, against the variations in the strength co-efficient of the refractive-index fluctuations, source size, small length-scale factor of turbulence, tissue length, fractal dimension, characteristic lengths of heterogeneity and the wavelength. For the examined tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human) and deep dermis (mouse), No AO beam spread and the adaptive optics corrected beam spread are found to increase as the strength coefficient of the refractive-index fluctuations, tissue length, fractal dimension, the char-acteristic lengths of heterogeneity increase, and to decrease as the source size, small length-scale factor, wavelength increase. Reduction ratio of P + T correction is almost the same for all the evaluated cases which is 74%.(C) 2022 Elsevier Ltd. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 12Adaptive Optics Corrections of Scintillations of Hermite-Gaussian Modes in an Oceanic Medium(Optical Soc Amer, 2020) Baykal, Yahya; 7812; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiAdaptive optics correction of the scintillation index is found when Hermite-Gaussian laser beams are used in oceanic turbulence. Adaptive optics filter functions are used to find how the tilt, focus, astigmatism, coma, and total correction will behave under high order mode excitation. Reduction of the oceanic scintillation under various oceanic turbulence and system parameters is examined under different high order modes. Also, the effects of the source size, wavelength, and link length on the total adaptive optics correction of Hermite-Gaussian modes in an oceanic medium are investigated for different modes. (C) 2020 Optical Society of AmericaArticle Citation - WoS: 14Citation - Scopus: 16Adaptive Optics Effect on Performance of Bpsk-Sim Oceanic Optical Wireless Communication Systems With Aperture Averaging in Weak Turbulence(Pergamon-elsevier Science Ltd, 2020) Baykal, Yahya; Ata, Yalcin; Gokce, Muhsin Caner; 7812; 06.03. Elektrik-Elektronik Mühendisliği; 06.02. Elektronik ve Haberleşme Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiTurbulence-induced wavefront deformations cause the irradiance of an optical signal to fluctuate resulting a in serious degradation in the bit-error-rate (BER) performance of optical wireless communication (OWC) system. Adaptive optics is an effective technique to compensate for the wavefront aberrations to reduce the fluctuations in the received intensity. In this paper, we investigate how the adaptive optics technique affects the BER performance of an oceanic OWC (OOWC) system employing binary phase shift keying-subcarrier intensity modulation (BPSK-SIM) and aperture averaging. To evaluate BER performance in weak oceanic turbulence, the required entities such as the received optical power captured by a circular aperture and the aperture averaged scintillation index measuring the fluctuations in the received irradiance are derived. The effect of adaptive optics correction of various wavefront aberrations (i.e., tilt, defocus, astigmatism and the coma) on the BER performance is illustrated and the performance of the adaptive optics-OOWC system is compared to that of a non-adaptive optics OOWC system by the metric defined. (C) 2020 Elsevier Ltd. All rights reserved.Publication Alternative Enhancement of Associativity Based Routing (Aeabr) for Mobile Networks(Springer, 2010) Preveze, Barbaros; Safak, Aysel; 17573; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThis study proposes an alternative enhancement for the Enhanced Associativity Based Routing (EABR) method which is a derivation of ABR (Associativity Based Routing) by relative speed and relative distance estimation using the received power strength (RPS) of the nodes. In this study, it is shown that EABR outperforms some other well known protocols. The performance of EABR is improved in terms of number of route reconstructions (RRC) and connected status percentage (CSP). Message overhead and bandwidth utilization is also investigated.Article Citation - WoS: 4Citation - Scopus: 4The Analysis of Anisotropic the Non-Kolmogorov Turbulence Effect on Asymmetrical Gaussian Beam Propagation in a Marine Atmosphere(Iop Publishing Ltd, 2019) Ata, Yalcin; Baykal, Yahya; 7812; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe variations of the scintillation index of an asymmetrical Gaussian beam are investigated when the beam propagates in anisotropic non-Kolmogorov marine atmospheric turbulence. The results indicate that the scintillation decreases when the anisotropy factors in both x and y directions increase. Increases in the beam asymmetry ratio and the inner scale length increase the scintillation index level. The scintillations are found to increase as the propagation distance and structure constant increase, and as the wavelength decreases. Being valid for any asymmetry and anisotropic factor, for small values of the power law exponent, alpha of non-Kolmogorov marine atmospheric turbulence, the scintillation index tends to increase proportionally with alpha. However, as alpha is further increased, the scintillation index starts to decrease after reaching a peak value. Larger anisotropy in the non-Kolmogorov marine turbulence is found to be preferable since the scintillation index is found to decrease at large anisotropic factors.Conference Object Citation - WoS: 1Citation - Scopus: 2Analysis of Lightning Impulse Effects on Three Winding Transformer Used in Solar System Based Ansys Maxwell(Ieee, 2022) Iskender, Ires; Yukselen, Emir; 133746; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiTransformers are in more critical applications in the renewable energy world and having a transformer fail in such a cyclical power station can be disastrous. Over voltage or voltage strike is the most important phenomena for the transformers. Thus, the evaluating and estimating the effects and stresses of these sudden high voltages is important during the transformers life time operation and design stage. Accordingly in this paper the electromagnetic field analyses of the lightning impulse on Photovoltaic (PV) transformer are investigated using ANSYS Maxwell software. The 3D and 2D model simulation of the PV transformer is carried out to determine the electric field and voltage distribution on critical regions which can cause breakdown on insulation material and damage transformer windings and affects transformer working. Afterwards according to the simulation result, the subjected transformer was designed considering the relative critical regions and performs the full wave lightning impulse test in factory area to verify the dielectric strength of the transformer. This study provides better understanding of the lightning impulse voltage effects with localization of the critical regions on the PV transformer and helps to improve the withstand capability of the transformer against the lightning impulse voltages during the design and production stage.Article Citation - WoS: 8Citation - Scopus: 8Analysis of Quantum Radar Cross-Section by Canonical Quantization Method (Full Quantum Theory)(Ieee-inst Electrical Electronics Engineers inc, 2020) Salmanogli, Ahmad; Gokcen, Dincer; 01. Çankaya ÜniversitesiThis article investigates the difference between two quantum-based theories to calculate the radar cross-section (RCS). Quantum radar cross-section (QRCS) has been commonly analyzed using the dipole approximation method, and the related results show that it can improve the sidelobe of the interference pattern in contrast to the classical methods. This study, on the other hand, utilizes the canonical quantization (or microscopic) method, which is a more comprehensive theory than the dipole approximation method to calculate the radar cross-section. It is shown that there are some similarities between two methods; nonetheless, there are some crucial quantities and factors that have been ignored in the dipole approximation methods. The main difference arises due to the interaction Hamiltonian that two methods relied on. The theoretical calculation shows some critical points suggesting that the dipole approximation method cannot cover all aspects of the radar cross-section calculation. To verify the mentioned point, we establish a new method in which the radar cross-section is calculated by merging the quantum approach with the method of moment (MoM), called quantum-method of moment (QMoM). The simulation results show that the newly established method is in harmony with the canonical quantization method.Conference Object Citation - Scopus: 4Analysis of Short Circuit Electromagnetic Force in a Three Winding Transformer Used in Solar System(Institute of Electrical and Electronics Engineers Inc., 2021) Iskender, I.; Jahi, A.; 133746; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiDue to the increasing of the fossil fuels prices in the past years and lack of these sources, all scientists encouraged to looking for the alternative energy sources. One of these energy sources is renewable solar energy. Power transmission from solar systems to grid is achieved using step up transformers. This type of transformer is energized from two inverter with or without variable frequency. Power transformers are deals with a variety of mechanical, electrical and thermal stresses during normal life time operation. Transient electromagnetic forces cause mechanical stress on transformer parameters where calculation of these forces with traditional methods is extremely complex due to the geometry of the transformer. Accordingly in this study, the electromagnetic forces takes place in the windings of a Photovoltaic (PV) transformer are investigated and for calculation of these forces, the 3D and 2D model of transformer is adapted in the ANSYS Workbench. The analysis of electromagnetic forces during the three line fault on high voltage side of the transformer are performed by the Finite Element Method (FEM) and compared with the analytical results. The numerical modeling technique discussed in this study would be useful in the design stage of PV transformer with regard to evaluate ability of transformer to withstand the short circuit current. © 2021 Chamber of Turkish Electrical Engineers.Article Citation - WoS: 4Citation - Scopus: 5Analysis of Wander and Spreading of an Optical Beam by Using the Oceanic Turbulence Optical Power Spectrum(Optica Publishing Group, 2022) Baykal, Yahya; Gokce, Muhsin Caner; Ata, YalcIn; 06.03. Elektrik-Elektronik Mühendisliği; 06.02. Elektronik ve Haberleşme Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiVariance of beam displacement and short-term and long-term spreading of a Gaussian beam propagating in the presence of underwater turbulence are examined by using the oceanic turbulence optical power spectrum (OTOPS). Analytical expressions for both beam wander displacement variance and beam spreading are presented. Results show that the underwater turbulent channel causes deflection from the on-axis mean irradiance and brings significant wander and spreading effects to the propagating Gaussian beam wave. The variations of beam wander and short- and long-term spreading are obtained depending on the underwater medium parameters such as the average temperature, average salinity concentration, temperature-salinity gradient ratio, and temperature and energy dissipation rates. In particular, the real values of the average temperature and salinity concentration of turbulent water are used to obtain the results. In addition, the effects of propagation distance, Gaussian beam source size, and wavelength are shown. The results demonstrate that the underwater turbulent channel brings displacements in the centroid and spreading of the optical beam. (C) 2022 Optica Publishing GroupArticle Citation - WoS: 5Citation - Scopus: 6Anisotropic Non-Kolmogorov Turbulence Effect on Transmittance of Multi-Gaussian Beam(Taylor & Francis Ltd, 2020) Ata, Yalcin; Baykal, Yahya; 7812; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe effect of anisotropic non-Kolmogorov turbulent atmosphere on multi-Gaussian beam is investigated and the results are presented against different beam and medium parameters. Results show that anisotropy increases the power efficiency of wireless communication systems. Besides anisotropy, turbulence effects on the multi-Gaussian optical beam are represented versus the beam source size, beam flatness order, propagation distance, inner scale length, turbulence strength, non-Kolmogorov turbulence power law exponent, wavelength, inner and outer source sizes for flat-topped and annular beams.Article Citation - WoS: 8Citation - Scopus: 9Anisotropy Effect on Multi-Gaussian Beam Propagation in Turbulent Ocean(Osa-optical Soc, 2018) Ata, Yalcin; Baykal, Yahya; 7812; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiAverage transmittance of multi-Gaussian (flat-topped and annular) optical beams in an anisotropic turbulent ocean is examined analytically based on the extended Huygens-Fresnel principle. Transmittance variations depending on the link length, anisotropy factor, salinity and temperature contribution factor, source size, beam flatness order of flat-topped beam, Kolmogorov microscale length, rate of dissipation of turbulent kinetic energy, rate of dissipation of the mean squared temperature, and thickness of annular beam are examined. Results show that all these parameters have effects in various forms on the average transmittance in an anisotropic turbulent ocean. Hence, the performance of optical wireless communication systems can be improved by taking into account the variation of average transmittance versus the above parameters.Article Citation - WoS: 11Citation - Scopus: 12Anisotropy Effect on Performance of Ppm Optical Wireless Oceanic Communication Links(Pergamon-elsevier Science Ltd, 2019) Baykal, Yahya; 7812; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe performance, quantified by the bit-error-rate (BER), of M-ary pulse position modulated (PPM) optical wireless oceanic communication (OWOC) link is investigated when such a link operates in anisotropic weak oceanic turbulence. For this purpose, formulations of the average received power and the scintillation index of collimated Gaussian optical beam detected by a point detector are developed for anisotropic weak oceanic turbulence, which in turn are employed in the BER expression of the PPM OWOC links. BER is evaluated under various turbulence parameters of anisotropic oceanic turbulence, M of M-ary PPM, data bit rate, average current gain of avalanche photodiode (APD). For any investigated parameter, it is found that the BER performance of M-ary PPM OWOC links is improved as the ocean becomes more anisotropic. (C) 2019 Elsevier Ltd. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 10Anisotropy Effect on Performance of Subcarrier Intensity Modulated Binary Phase Shift Keying Optical Wireless Communication Links in Weakly Turbulent Underwater Channel(Taylor & Francis Ltd, 2019) Gokce, Muhsin C.; Ata, Yalcin; Baykal, Yahya; 7812; 06.02. Elektronik ve Haberleşme Mühendisliği; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiThe effect of the anisotropy on the bit-error-rate (BER) performance of subcarrier intensity modulated (SIM) binary phase shift keying (BPSK) optical wireless communication (OWC) links operating in weakly turbulent underwater channels is examined. BER variations versus the anisotropic factor are examined when the bandwidth, photodetector responsivity, load resistor and the underwater turbulence parameters are varied. As anisotropy in the underwater channel becomes larger, SIM BPSK OWC links have better BER performance at any link and turbulence parameter.Article Citation - WoS: 1Citation - Scopus: 1Antenna Synthesis by Levin's Method Using a Novel Optimization Algorithm for Knot Placement(Applied Computational Electromagnetics Soc, 2023) Sener, Goker; 17740; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya Üniversitesi- Antenna synthesis refers to determining the antenna current distribution by evaluating the inverse Fourier integral of its radiation pattern. Since this inte-gral is highly oscillatory, Levin's method can be used for the solution, providing high accuracy. In Levin's method, the integration domain is divided into equally spaced sub-intervals, and the integrals are solved by transfer-ring them into differential equations. This article uses a new optimization algorithm to determine the location of these interval points (knots) to improve the method's accuracy. Two different antenna design examples are pre-sented to validate the accuracy and efficiency of the pro-posed method for antenna synthesis applications.Article Antenna Synthesis by Levin's Method Using Reproducing Kernel Functions(Applied Computational Electromagnetics Soc, 2023) Sener, Goker; 17740; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiAn antenna synthesis application is presented by solving a highly oscillatory Fourier integral using a stable and accurate Levin's algorithm. In antenna synthesis, the current distribution is obtained by the inverse Fourier integral of the antenna radiation pattern. Since this integral is highly oscillatory, the Levin method can be used for its solution. However, when the number of nodes or the frequency increases, the Levin method becomes unstable and ineffective due to the large condition number of the interpolation matrix. Thus, an improved scheme of the method is used in an antenna synthesis application in which reproducing kernel functions are used as the basis of the approximation function. The accuracy of the new method is verified by a log-periodic antenna example. The error and stability analysis results show that the new method is more stable and accurate than other well-known kernels, especially for a large number of nodes.Article Citation - WoS: 69Citation - Scopus: 80Aperture Averaging and Ber for Gaussian Beam in Underwater Oceanic Turbulence(Elsevier Science Bv, 2018) Baykal, Yahya; Gokce, Muhsin Caner; 28643; 7812; 06.03. Elektrik-Elektronik Mühendisliği; 06.02. Elektronik ve Haberleşme Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiIn an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated. (c) 2017 Elsevier B.V. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 9Aperture Averaging in Multiple-Input Single-Output Free-Space Optical Systems(Spie-soc Photo-optical instrumentation Engineers, 2015) Baykal, Yahya; Kamacioglu, Canan; Uysal, Murat; Gokce, Muhsin C.; 28643; 7812; 124615; 06.03. Elektrik-Elektronik Mühendisliği; 06.02. Elektronik ve Haberleşme Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiMultiple-input single-output systems are employed in free-space optical links to mitigate the degrading effects of atmospheric turbulence. We formulate the power scintillation as a function of transmitter and receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens Fresnel principle. Then the effect of the receiver aperture averaging is quantified. To get consistent results, parameters are chosen within the range of validity of the wave structure functions. Radial array beams and a Gaussian weighting aperture function are used at the transmitter and the receiver, respectively. It is observed that the power scintillation decreases when the source size, the ring radius, the receiver aperture radius, and the number of array beamlet increase. However, increasing the number of array beamlets to more than three seems to have negligible effect on the power scintillation. It is further observed that the aperture averaging effect is stronger when radial array beams are employed instead of a single Gaussian beam. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)Article Citation - WoS: 25Citation - Scopus: 25Aperture Averaging in Multiple-Input Single-Output Free-Space Optical Systems Using Partially Coherent Radial Array Beams(Optical Soc Amer, 2016) Baykal, Yahya; Uysal, Murat; Gokce, Muhsin Caner; 28643; 7812; 124615; 06.02. Elektronik ve Haberleşme Mühendisliği; 06.03. Elektrik-Elektronik Mühendisliği; 06. Mühendislik Fakültesi; 01. Çankaya ÜniversitesiMultiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens - Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices. (C) 2016 Optical Society of America
