Elektronik ve Haberleşme Mühendisliği Bölümü Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/260
Browse
Browsing Elektronik ve Haberleşme Mühendisliği Bölümü Yayın Koleksiyonu by browse.metadata.publisher "Amer Chemical Soc"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 27Citation - Scopus: 31The Effects of Lattice Motion on Eley-Rideal and Hot Atom Reactions: Quasiclassical Studies of Hydrogen Recombination on Ni(100)(Amer Chemical Soc, 2002) Guvenc, ZB; Sha, XW; Jackson, BQuasiclassical methods are used to simulate the interactions of H or D atom beams with D- or H-covered Ni(100) surfaces. The Ni substrate is treated as a multilayer slab, and the Ni atoms are allowed to move. The model potential energy surface is fit to the results of detailed total-energy calculations based on density functional theory. Most of the incident atoms trap to form hot atoms, which can eventually react with an adsorbate, or dissipate their energy and stick. The incident atom is found to lose several tenths of an eV of energy into the metal, upon initially colliding with the surface. This limits reflection to a few percent, at all coverages, and secondary reactions between adsorbates are significantly lowered. Long time hot atom reactions are also found to be damped out by the inclusion of lattice motion, leading to increased sticking, even at high coverages where dissipation into the adsorbates should be the primary energy loss mechanism. Overall, the inclusion of lattice motion is found to improve agreement with experiment.Article Citation - WoS: 158The Unusually Stable B100 Fullerene, Structural Transitions in Boron Nanostructures, and a Comparative Study of Α- and Γ-Boron and Sheets(Amer Chemical Soc, 2010) Mukhopadhyay, S.; Hayami, W.; Guvenc, Z. B.; Pandey, R.; Boustani, I.; Ozdogan, C.Solid alpha-B-12 rhombohedral and gamma-B-28 orthorhombic boron as well as boron nanostructures in the form of spheres, sheets, and multirings beside a ring consisting of icosahedral B-12 units were investigated using ab initio quantum chemical and density functional methods. The structure of the 131(x) fullerene exhibits unusual stability among all noninteracting free-standing Clusters, and is more stable than the 13120 cluster fragment of the gamma-B-28 solid, recently predicted and observed by Oganov et al. (Nature 2009, 457, 863). In addition, we compared the stability of the multirings and reported the structural transition from double-ring to triple-ring systems. This structural transition Occurs between B-52 and B-54 Clusters. We confirm that the noninteracting free-standing triangular buckled-sheet is more stable than the gamma-sheet, assembled in this work, and than the a-sheet, proposed by Tang and Ismail-Beigi (Phys. Rev. Lett. 2007, 99, 115501). In contrast, however, when these sheets are considered as infinite periodic systems, then the a-sheet remains the most stable one.
