Elektrik Elektronik Mühendisliği Bölümü Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/411
Browse
Browsing Elektrik Elektronik Mühendisliği Bölümü Yayın Koleksiyonu by Scopus Q "Q2"
Now showing 1 - 20 of 64
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 5Accurate Method To Calculate Noise Figure in a Low Noise Amplifier: Quantum Theory Analysis(Elsevier Sci Ltd, 2022) Salmanogli, Ahmad; Gecim, H. Selcuk; 182579In this study, a low-noise amplifier is quantum-mechanically analyzed to study the behavior of the noise figure. The analysis view has been changed from classic to quantum, because using quantum theory produces some degrees of freedom, which may be ignored when a circuit is analyzed using classical theory. For this purpose, the Lagrangian is initially derived by considering the related nonlinearity of the transistor, and then using the Legendre transformation and canonical quantization procedure, the quantum Hamiltonian is derived. As an interesting point of this study, the low-noise amplifier is deliberately considered as two oscillators connecting to each other to share the photonic modes between them; accordingly, the voltage and current as measurable observations and the noise figure as a critical quantity in a low-noise amplifier are theoretically expressed in terms of the oscillator's mean photon number. The main goal of this work is to study quantities such as the noise figure in a sufficient detail using quantum theory. In addition, as an advantage of this theory, one can control and manipulate the noise figure only by manipulation of the oscillator's mean photon number and coupling it between two oscillators. Finally, the circuit is classically designed and simulated to verify the derived results using quantum theory. The comparison results show that there is a partial consistency between the two approaches; as the frequency increases, the noise figure becomes minimized at a particular frequency.Article Citation - WoS: 7Citation - Scopus: 6Adaptive Optics Correction of Beam Spread in Biological Tissues(Pergamon-elsevier Science Ltd, 2022) Baykal, YahyaBeam spread in turbulent biological tissues is examined when the tissue is excited with a collimated Gaussian laser beam. Adaptive optics correction is applied to the beam spread in the form of piston only (P Only), tilt only (T Only), piston + tilt (P + T), and the reduction in the beam spread is evaluated as com-pared to the no adaptive optics (No AO) corrected beam spread. No AO and adaptive optics corrected beam spread are expressed for various biological tissue types, against the variations in the strength co-efficient of the refractive-index fluctuations, source size, small length-scale factor of turbulence, tissue length, fractal dimension, characteristic lengths of heterogeneity and the wavelength. For the examined tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human) and deep dermis (mouse), No AO beam spread and the adaptive optics corrected beam spread are found to increase as the strength coefficient of the refractive-index fluctuations, tissue length, fractal dimension, the char-acteristic lengths of heterogeneity increase, and to decrease as the source size, small length-scale factor, wavelength increase. Reduction ratio of P + T correction is almost the same for all the evaluated cases which is 74%.(C) 2022 Elsevier Ltd. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 12Adaptive Optics Corrections of Scintillations of Hermite-Gaussian Modes in an Oceanic Medium(Optical Soc Amer, 2020) Baykal, Yahya; 7812Adaptive optics correction of the scintillation index is found when Hermite-Gaussian laser beams are used in oceanic turbulence. Adaptive optics filter functions are used to find how the tilt, focus, astigmatism, coma, and total correction will behave under high order mode excitation. Reduction of the oceanic scintillation under various oceanic turbulence and system parameters is examined under different high order modes. Also, the effects of the source size, wavelength, and link length on the total adaptive optics correction of Hermite-Gaussian modes in an oceanic medium are investigated for different modes. (C) 2020 Optical Society of AmericaArticle Citation - WoS: 14Citation - Scopus: 16Adaptive Optics Effect on Performance of Bpsk-Sim Oceanic Optical Wireless Communication Systems With Aperture Averaging in Weak Turbulence(Pergamon-elsevier Science Ltd, 2020) Baykal, Yahya; Ata, Yalcin; Gokce, Muhsin Caner; 7812Turbulence-induced wavefront deformations cause the irradiance of an optical signal to fluctuate resulting a in serious degradation in the bit-error-rate (BER) performance of optical wireless communication (OWC) system. Adaptive optics is an effective technique to compensate for the wavefront aberrations to reduce the fluctuations in the received intensity. In this paper, we investigate how the adaptive optics technique affects the BER performance of an oceanic OWC (OOWC) system employing binary phase shift keying-subcarrier intensity modulation (BPSK-SIM) and aperture averaging. To evaluate BER performance in weak oceanic turbulence, the required entities such as the received optical power captured by a circular aperture and the aperture averaged scintillation index measuring the fluctuations in the received irradiance are derived. The effect of adaptive optics correction of various wavefront aberrations (i.e., tilt, defocus, astigmatism and the coma) on the BER performance is illustrated and the performance of the adaptive optics-OOWC system is compared to that of a non-adaptive optics OOWC system by the metric defined. (C) 2020 Elsevier Ltd. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 5Analysis of Wander and Spreading of an Optical Beam by Using the Oceanic Turbulence Optical Power Spectrum(Optica Publishing Group, 2022) Baykal, Yahya; Gokce, Muhsin Caner; Ata, YalcInVariance of beam displacement and short-term and long-term spreading of a Gaussian beam propagating in the presence of underwater turbulence are examined by using the oceanic turbulence optical power spectrum (OTOPS). Analytical expressions for both beam wander displacement variance and beam spreading are presented. Results show that the underwater turbulent channel causes deflection from the on-axis mean irradiance and brings significant wander and spreading effects to the propagating Gaussian beam wave. The variations of beam wander and short- and long-term spreading are obtained depending on the underwater medium parameters such as the average temperature, average salinity concentration, temperature-salinity gradient ratio, and temperature and energy dissipation rates. In particular, the real values of the average temperature and salinity concentration of turbulent water are used to obtain the results. In addition, the effects of propagation distance, Gaussian beam source size, and wavelength are shown. The results demonstrate that the underwater turbulent channel brings displacements in the centroid and spreading of the optical beam. (C) 2022 Optica Publishing GroupArticle Citation - WoS: 8Citation - Scopus: 9Anisotropy Effect on Multi-Gaussian Beam Propagation in Turbulent Ocean(Osa-optical Soc, 2018) Ata, Yalcin; Baykal, Yahya; 7812Average transmittance of multi-Gaussian (flat-topped and annular) optical beams in an anisotropic turbulent ocean is examined analytically based on the extended Huygens-Fresnel principle. Transmittance variations depending on the link length, anisotropy factor, salinity and temperature contribution factor, source size, beam flatness order of flat-topped beam, Kolmogorov microscale length, rate of dissipation of turbulent kinetic energy, rate of dissipation of the mean squared temperature, and thickness of annular beam are examined. Results show that all these parameters have effects in various forms on the average transmittance in an anisotropic turbulent ocean. Hence, the performance of optical wireless communication systems can be improved by taking into account the variation of average transmittance versus the above parameters.Article Citation - WoS: 11Citation - Scopus: 12Anisotropy Effect on Performance of Ppm Optical Wireless Oceanic Communication Links(Pergamon-elsevier Science Ltd, 2019) Baykal, Yahya; 7812The performance, quantified by the bit-error-rate (BER), of M-ary pulse position modulated (PPM) optical wireless oceanic communication (OWOC) link is investigated when such a link operates in anisotropic weak oceanic turbulence. For this purpose, formulations of the average received power and the scintillation index of collimated Gaussian optical beam detected by a point detector are developed for anisotropic weak oceanic turbulence, which in turn are employed in the BER expression of the PPM OWOC links. BER is evaluated under various turbulence parameters of anisotropic oceanic turbulence, M of M-ary PPM, data bit rate, average current gain of avalanche photodiode (APD). For any investigated parameter, it is found that the BER performance of M-ary PPM OWOC links is improved as the ocean becomes more anisotropic. (C) 2019 Elsevier Ltd. All rights reserved.Article Citation - WoS: 69Citation - Scopus: 80Aperture Averaging and Ber for Gaussian Beam in Underwater Oceanic Turbulence(Elsevier Science Bv, 2018) Baykal, Yahya; Gokce, Muhsin Caner; 28643; 7812In an underwater wireless optical communication (UWOC) link, power fluctuations over finite-sized collecting lens are investigated for a horizontally propagating Gaussian beam wave. The power scintillation index, also known as the irradiance flux variance, for the received irradiance is evaluated in weak oceanic turbulence by using the Rytov method. This lets us further quantify the associated performance indicators, namely, the aperture averaging factor and the average bit-error rate (). The effects on the UWOC link performance of the oceanic turbulence parameters, i.e., the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature, Kolmogorov microscale, the ratio of temperature to salinity contributions to the refractive index spectrum as well as system parameters, i.e., the receiver aperture diameter, Gaussian source size, laser wavelength and the link distance are investigated. (c) 2017 Elsevier B.V. All rights reserved.Article Citation - WoS: 35Citation - Scopus: 40Aperture Averaging in Strong Oceanic Turbulence(Elsevier Science Bv, 2018) Baykal, Yahya; Gokce, Muhsin Caner; 28643; 7812Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence. (C) 2017 Elsevier B.V. All rights reserved.Article Citation - WoS: 24Citation - Scopus: 26Average Channel Capacity in Anisotropic Atmospheric Non-Kolmogorov Turbulent Medium(Elsevier, 2019) Baykal, Yahya; Gokce, Muhsin Caner; Ata, Yalcin; 7812The average channel capacity of a free space optical (FSO) communication system running an intensity modulated Gaussian beam is examined in anisotropic non-Kolmogorov atmospheric weak turbulence based on Rytov variance. Results are obtained by employing the log-normal distribution of irradiance fluctuations corresponding to weak turbulence regime. Our results show that average channel capacity increases together with the increase in anisotropy factor in x and y direction, non-Kolmogorov power law exponent, quantum efficiency of photo detector, Gaussian beam source size and the inner scale length. However, the average channel capacity is found to decrease when turbulence strength, link length and noise variance increase.Article Citation - WoS: 23Citation - Scopus: 23Ber of Asymmetrical Optical Beams in Oceanic and Marine Atmospheric Media(Elsevier Science Bv, 2017) Baykal, Yahya; 7812The average bit-error-rate (BER) performances of asymmetrical optical Gaussian beams propagating in oceanic and marine atmospheric turbulence are examined. Both type of media are assumed to exhibit weak turbulence. The effect of asymmetry factor on the BER performance are investigated in conjunction with the oceanic turbulence parameters of the ratio of temperature to salinity contributions to the refractive index spectrum, the rate of dissipation of mean-squared temperature and the rate of dissipation of kinetic energy per unit mass of fluid, and with the marine atmospheric link parameters of the link length and the structure constant. Also, the variations of the BER against the source size of various asymmetrical beams are scrutinized in both oceanic and marine atmospheric media.Article Citation - WoS: 4Citation - Scopus: 4Coupling Efficiency of Multimode Beam To Fiber in Atmospheric Turbulence(Pergamon-elsevier Science Ltd, 2023) Baykal, Yahya; Ata, Yalcin; Gokce, Muhsin Caner; 7812Atmospheric turbulence causes wavefront distortions in the propagated laser beam. By the beam shaping of the transmitted laser, wavefront distortions can be mitigated effectively. In this paper, we consider a shaped laser modeled by multimode beams at the transmitter and investigate the coupling of the light wave to a single-mode fiber under the atmospheric turbulence effect. We derive the light power on the coupling lens and light power accepted by the fiber core using the extended Huygens-Fresnel princi-ple. Then, the fiber coupling efficiency (FCE) is scrutinized for different system parameters such as the number of modes of the transmit laser, link distance, structure constant of atmosphere, focal length and radius of the coupling lens, wavelength, source size, and the number of speckles (NOS).(c) 2023 Elsevier Ltd. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 4Depth Dependence of Oceanic Turbulence Optical Power Spectrum Under Any Temperature and Salinity Concentration(Iop Publishing Ltd, 2024) Gercekcioglu, Hamza; Baykal, Yahya; 7812The Oceanic Turbulence Optical Power Spectrum (OTOPS) with depth variations is acquired under any temperature and salinity concentration. It is supposed that specific medium is the Atlantic Ocean at high latitude and the Pacific Ocean at high, mid and low latitudes. For the OTOPS model, a depth-varying functions that include low-latitude, high- and mid-latitude-summer and mid-latitude-winter salinity and temperature changes are found. With the help of the equations for the temperature and salinity changes, figures are obtained for the eddy diffusivity ratio depth of seawater and OTOPS model against the depth and kappa at these media. In the ocean, downlink (uplink) is defined as the optical wireless communication link where the receiver (transmitter) is located at a deeper point than the transmitter (receiver), i.e., in the downlink, optical signal proceeds from a point close to ocean surface to deeper ocean and in the uplink, optical signal proceeds from deeper ocean to a point close to ocean surface. In this paper, the OTOPS model is investigated on how its properties change in the underwater environment in downlink and uplink. Different behavior of the OTOPS model is exhibited.Article Citation - WoS: 4Citation - Scopus: 4Design and Implementation of a Mhz Frequency Transformer With a Ferromagnetic Fluid Core(Mdpi, 2023) Hatem, Sude; Kurt, Erol; 391090Design and optimization of a magnetic fluid cored transformer are studied for high frequency applications. An easy and cheap fluid core is designed and used to decrease the eddy current and loses, thereby low conducting and paramagnetic features are added. The core exhibits both fluid and solid characteristics exerting high frequency modes in the fluid and low current due to the iron powder inside. The finite element analysis simulations are performed via COMSOL Multi-physics package for different mass fractions of iron powder. The maximum peak-to-peak voltage and power are found as 526 mV and 188.8 mW at 12 MHz from the simulations. 3D patterns prove that the magnetic flux and magnetization exhibit turbulence in the core, thereby localized magnetic values indicate an arbitrary attitude for various frequencies. Optimum mass fraction is found as 0.7, which is parallel with experimental results. The transformer operates between 11 MHz and 13.5 MHz optimally.Article Citation - WoS: 1Citation - Scopus: 1Design Studies of Vsc Hvdc Converter According To Ac Voltage Tests(Mdpi, 2022) Iskender, Ires; Haliloglu, Ali Burhan; 133746Since high-voltage direct current (HVDC) systems are very expensive and operationally critical, these systems must be tested before they are put into service. Insulation and performance tests are the two main subjects of these tests. AC voltage tests, as part of the insulation tests, should be performed after system installation is complete and before commissioning. However, in this study, the objective was to perform these tests during the prototype phase of VSC HVDC. Unlike other studies, this study attempted to use COMSOL Multiphysics to determine in advance the problems that may occur in the real system. In this regard, the busbars connecting the submodules of the VSC HVDC system were first modeled in 3D, and the tests to be performed were simulated using COMSOL Multiphysics software. During the simulation, the finite element method (FEM) was used to identify critical points that could cause partial discharge. To validate the simulation results, partial discharge tests on a real system were conducted, and the design changes made in response to each test result were explained. After the improvement actions, the targeted partial discharge values were achieved.Editorial Citation - WoS: 1Citation - Scopus: 1Editorial: Optical Wave Propagation and Communication in Turbulent Media(Frontiers Media Sa, 2023) Baykal, Yahya; 7812Article Citation - WoS: 36Citation - Scopus: 39Effect of Anisotropy on Bit Error Rate for an Asymmetrical Gaussian Beam in a Turbulent Ocean(Optical Soc Amer, 2018) Ata, Yalcin; Baykal, Yahya; 7812Effect of anisotropy on the average bit error rate (BER) is investigated when an asymmetrical Gaussian beam is propagated in an anisotropic turbulent ocean. BER is found to decrease in response to an increase in anisotropy levels in the x and y directions. Higher average signal-to-noise ratio, wavelength, and microscale length yield smaller BER values. BER starts to rise with an increase in the asymmetrical beam source size in the x and y directions, source size ratio in the x and y directions, salinity and temperature contribution factor, the dissipation of the mean squared temperature, and the propagation distance. At the fixed source size ratio in the x and y directions of the asymmetrical beam source size, larger source sizes increase BER. An anisotropic turbulent ocean seems to exhibit better BER values as compared with an isotropic turbulent ocean. (c) 2018 Optical Society of AmericaArticle Citation - WoS: 6Citation - Scopus: 6Effect of Partial Coherence on Signal-To Ratio Performance of Free Space Optical Communication System in Weak Turbulence(Elsevier, 2022) Aymelek, Goerkem; Yolcu, Beguem; Kayam, Orkun; Unal, Onur; Caner Gokce, Muhsin; Baykal, Yahya; Akbucak, VolkanThe effect of source coherence on the average signal-to-noise ratio ((SNR)) performance of free space optical communication (FSOC) systems operating in weak atmospheric turbulence is investigated with the help of the extended Huygens-Fresnel principle. For an FSOC system that uses a partially coherent laser source, first, the received power at the finite-sized receiver aperture is derived. Then, the power scintillation index is evaluated that reflects the aperture averaging. Using these derived optical entities, the variations of (SNR) are examined versus parameters such as the degree of source coherence, wavelength, link distance, source size, structure constant of atmosphere and the receiver aperture radius. Obtained results show that a decrease in the degree of source coherence has a positive effect on (SNR).Article Citation - WoS: 9Citation - Scopus: 11Effect of Strong Atmospheric Non-Kolmogorov Turbulence on the M-Ary Psk Subcarrier Intensity Modulated Free Space Optical Communications System Performance(Optical Soc Amer, 2019) Baykal, Yahya; Gokce, Muhsin C.; Ata, Yalcin; 7812Atmospheric turbulence is one of the significant phenomena that degrades the free space optical (FSO) communications system performance, and thus designers need to define the requirements related to turbulence and optimize the system design to ensure optimum performance. The subcarrier intensity modulation (SIM) shows superiority in terms of bandwidth usage over the other modulation techniques. Performance of FSO communication systems exercising M-ary phase-shift-keying (PSK) SIM with the PIN photodiode receiver is evaluated in non-Kolmogorov strong atmospheric turbulence when a Gaussian beam is used as the excitation. Bit-error-rate (BER) of PSK SIM FSO communication systems is examined, and the results are presented versus the non-Kolmogorov atmospheric turbulence and positive-intrinsic-negative (PIN) photodetector parameters such as PIN photodetector responsivity, equivalent load resistor, modulation order, noise factor, bandwidth, propagation distance, and beam source size. (C) 2019 Optical Society of AmericaArticle Enhancing Quantum Correlation at Zero-If Band by Confining the Thermally Excited Photons: Inp Hemt Circuitry Effect(Springer, 2023) Salmanogli, AhmadThe microwave quantum correlation as a crucial issue in quantum technology is analyzed and studied. An open quantum system operating at 4.2 K is designed in which InP HEMT as the nonlinear component couples two external oscillators. The quantum theory is applied to analyze the system completely. The Lindblad Master equation is used to analyze the time evolution of the expanded closed system that covers the environmental effects. In the following, the state of the system defined is determined in terms of the ensemble average state using the density matrix; then, the ensemble average of the different operators is calculated. Accordingly, the covariance matrix of the quantum system is derived, and the quantum discord as a key quantity to determine the quantum correlation is calculated. As an interesting point, the results show that InP HEMT mixes two coupling oscillator modes so that the quantum correlation is created at different frequency productions, especially the zero-IF band. Nonetheless, the main point is that one can strongly manipulate the quantum correlation in the zero-IF using circuitry engineering. It is established by increasing the operational frequencies in the quantum system leading to dramatically limiting the thermal noise since the zero-IF band remains unchanged.
