İnşaat Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/17
Browse
Browsing İnşaat Mühendisliği Bölümü by Scopus Q "Q2"
Now showing 1 - 20 of 20
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 9A finite grid solution for circular plates on elastic foundations(Korean Society of Civil Engineers-ksce, 2015) Karasin, Halim; Gulkan, Polat; Aktas, Gultekin; 5743The transmission of vertical or horizontal structural forces to the supporting soil is a challenge to analyze for structures on elastic foundation which represent a complex medium. The two-parameter elastic foundation model that provides a mechanical interaction between the individual spring elements shows a more realistic behavior of the soil reaction than does the single parameter Winkler model. Since the structural behavior of a beam resembles that of a strip in a plate, in this study, the exact stiffness and mass matrices of the beam element on two-parameter elastic foundation is extended to plates. The framework method that replaces a continuous surface by an idealized discrete system can represent a two-dimensional plate. In the light of this situation, circular plates are modeled as an assemblage of individual beam elements interconnected at their neighboring joints in radial and tangential direction. So, a useful tool called finite grid solution as a numerical method developed in this study lead to solve circular plates resting on two parameter elastic foundation problems. Examples for bending of ring, circular and annual plates on elastic foundation are solved to compare with known analytical solutions and other numerical solutions. The comparisons show that the literature and the computed results are compatible.Article Citation - WoS: 4Citation - Scopus: 6A Modified Applied Element Model for the Simulation of Plain Concrete Behaviour(Emerald Group Publishing Ltd, 2023) Soysal, Berat Feyza; Arici, Yalin; Tuncay, Kagan; 157572A modified applied element model to simulate the behaviour of plain concrete continuum structures including discrete cracking is proposed in this study. In the classical applied element model, Poisson effects are fully ignored. To remediate this issue, diagonal elements are introduced to include the Poisson effect, and the constitutive parameters are rigorously determined using the Cauchy-Born rule and the hyper-elastic theory. The formulation is validated for linear elastic problems and the consistency and convergence behaviour of the numerical approach is shown. Tensile softening formulation using the concept of fracture energy is utilised for the nonlinear range. In this range, the approach is validated using the classical benchmark tests with pure tensile, split-tensile, combined shear-tensile and bending dominated push-over loading. The load-displacement behaviour and crack response were captured successfully, showing the proposed methodology can be used to quantify discrete cracks on large systems, such as dam monoliths, from initiation to significant damage levels.Article Citation - WoS: 16Citation - Scopus: 20Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading(Sage Publications Ltd, 2021) Isleyen, ummu K.; Ghoroubi, Rahim; Mercimek, Omer; Anil, Ozgur; Erdem, Recep TugrulIn the last 20 years, the use of wooden structures and their dimensions have gradually increased. The wood application has increased in different structures such as multistory buildings, sports, industrial facilities, road and railway bridges, power transmission lines, and towers. The widespread use and size of wood structures have increased the research on developing special types of wood products supported by composite materials. Laminated wood elements are the leading composite wood materials. Laminated wooden beams allow making much larger openings than standard solid wood structural elements. The development of the sizes and usage areas of wooden structures has increased the capacity of glulam structural elements and reveals the need to improve their performance. Carbon fiber reinforced polymers (CFRPs) are the most suitable options for increasing the bearing capacity values of glulam beams and improving general load-displacement behaviors. In this study, the use of CFRP strips in different layouts to increase glulam wooden beams and the application of CFRP fan-type anchors in the CFRP strip endpoints are the studied variables. Anchored and non-anchored glulam wooden beams reinforced with CFRP strips with different layouts were tested using a three-point bending test. The ultimate load capacity, initial stiffness, displacement ductility ratio, energy dissipation capacity, failure mechanisms, and general load-displacement behavior of wooden beam test specimens were obtained and interpreted as a result of the experiments.Article Citation - WoS: 3Citation - Scopus: 3Behaviour of steel beams retrofitted with anchored carbon-fibre-reinforced polymer strips(Ice Publishing, 2022) Mercimek, Omer; Ghoroubi, Rahim; Baran, Mehmet; Anil, OzgurSteel bridge beams can be damaged due to increased traffic loads and environmental impacts. An experimental study on the use of bonded and mechanically anchored carbon-fibre-reinforced polymer (CFRP) strips was undertaken to assess the retrofitting of such steel beams. The number of mechanical anchors used in the ends of the bonded strips was varied from zero to eight. The steel beam samples were tested under four-point loading. Loading was applied as an increasingly high static load and a low repetitive fatigue load. The load-displacement behaviour under the effects of static and fatigue loading and the strain distributions along the strips were measured and interpreted. The results showed that retrofitting cracked steel beams with CFRP strips is an effective method. In addition, retrofitting with anchored strips increased the performance of cracked beams under the effects of both static and fatigue loading.Article Citation - WoS: 6Citation - Scopus: 6Crack Width–Seismic Intensity Relationships for Concrete Gravity Dams(Taylor & Francis Ltd, 2024) Soysal, Berat Feyza; Arici, Yalin; 157572Seismic assessment of plain concrete structures like gravity dams is generally conducted based on cracking. The responses of two types of gravity dams, i.e. the conventional and roller compacted concrete (RCC), were investigated in this study using a discrete element tool coupled with special reservoir elements. Using incremental dynamic analysis, the relationship between the seismic intensity measures and crack widths on the U/S face of the monolith was obtained. The damage accumulation on conventional and RCC dams was different: The cumulative cracking on the upstream face of the monolith correlated well to a seismic intensity measure representing base shear.Article Citation - WoS: 7Citation - Scopus: 8Dynamic shear force amplification in regular frame-wall systems(Wiley-blackwell, 2016) Kazaz, Ilker; Gulkan, Polat; 5743A parametric study is conducted to investigate the dynamic shear amplification factor (DAF) in low-to-mid-rise frame-wall systems in which the reinforcement curtailment along the height matches the required code strength. The level of frame-wall interaction is varied by changing the wall index, defined as the ratio of the total wall area to the floor plan area, in a generic frame-wall system, and its correlation with the DAF is investigated. Wall index values ranging in the 0.2% to 2% interval are selected. Walls with lengths of 3m, 5m and 8m are used in the design of model buildings of 4, 8 and 12 stories. Shear-flexure beam continuum formulation is used in design and modeling. The global behavior is analyzed using nonlinear response history procedure using spectrum compatible ground motions. It is found that the primary source of amplification is the level of inelastic demand on the system. Walls designed for code-specified force reduction factor R=6 experienced an average base shear force amplification in the order of 1.64 with standard deviation of 0.19 with respect to design shear force. Amplification diminishes with decreasing R. An expression for the dynamic amplification factor as a function of the number of stories and force reduction factor R is proposed. Copyright (C) 2015 John Wiley & Sons, Ltd.Article Citation - WoS: 15Citation - Scopus: 15Effect of anchorage number and CFRP strips length on behavior of strengthened glulam timber beam for flexural loading(Sage Publications inc, 2021) Isleyen, Ummu Karagoz; Ghoroubi, Rahim; Mercimek, Omer; Anil, Ozgur; Togay, Abdullah; Erdem, R. TugrulLaminated wooden beams are more preferred in the production of wooden structures than solid timber beams because they have a higher load-carrying capacity and allow larger openings to be used in the structure. The widespread use of wooden structures and the increasing size of the structures have revealed the need for strengthened laminated wooden beams and increase their ultimate load capacity. It has become necessary to develop reinforcement details to increase the ultimate load capacity of laminated wooden beams in wooden railroads or highway bridge beams, where the traffic load increases, especially in large wooden structures, in cases where large openings must be passed. Within the horizon of the study, the behavior and performance of three-layer glulam wooden beams strengthened with anchorage and non-anchorage CFRP strips with different bonding length under flexural loading were investigated experimentally. The three-point bending test was applied to glulam timber beam test specimens produced by laminating yellow pine wood material using the polyurethane adhesive. General load-displacement behaviors, ultimate load capacity, initial stiffness, displacement ductility ratios, and energy dissipation capacities were obtained. The increase in the bonding length of the CFRP strips used for strengthening in the glulam timber beam specimens and the use of CFRP fan type anchors at the strip ends increased the ultimate load capacity and initial stiffness values of the wooden beams, as well as the displacement ductility ratios and energy dissipation capacity values.Article Citation - WoS: 8Citation - Scopus: 9Effect of Collars on the Downstream Movement of the Maximum Scour Depth Location Around Bridge Abutments and Piers(Springer int Publ Ag, 2022) Kumcu, Serife Yurdagul; Kokpinar, Mehmet Ali; Gogus, Mustafa; 6062A detailed investigation has been conducted to study the shift location of the point of the maximum scour depth for both bridge abutment-collar and pier-collar arrangements. In the present study, an experimental program has been conducted for abutment-collar arrangements and additionally, the data obtained from the literature for the pier-collar arrangements have been revisited and analyzed to complement the framework of this study. For the abutment-collar arrangements, a series of experiments under clear-water conditions were carried out for different abutment lengths with fixed values of collar location and collar width. For pier-collar arrangements, data used from the literature have been involved constant pier diameter with various collar sizes at various elevations. To describe the locations of these maximum scour depths, their coordinates with respect to the location of the abutment or the pier were obtained. Results from this investigation showed that when a collar placed on or below the bed level was used as a countermeasure against scouring, either on an abutment or on a pier, it was observed that the maximum scour depth was routed downstream of the bridge structure.Article Citation - WoS: 16Citation - Scopus: 19Effect of Sm on Crystallization Kinetics of Cu-Zr-Al Metallic Glasses(Elsevier, 2020) Sikan, F.; Polat, G.; Kalay, I.; Kalay, Y. E.; 5743The effect of Sm micro-alloying on non-isothermal and isothermal crystallization kinetics of (Zr50Cu40Al10)(100-x)Sm-x (x = 0, 2, 4 at. % Sm) alloys were investigated using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Crystallization activation energies for each composition were calculated in non-isothermal conditions using Kissinger and Ozawa methods and in isothermal conditions using Johnson-Mehl-Avrami model. XRD analysis showed that crystallization product Cu10Zr7 changes to Cu2Sm with Sm presence in isothermal conditions. Both isothermal and isochronal calculations yield that the energy barrier for crystallization has increased with Sm addition. On the other hand, crystallization point drops to lower temperature at the expense of an increase in the pre-exponential factor. The Avrami exponents for all compositions were found to be below 2.5, indicating that crystallization was governed by a diffusion-controlled three-dimensional growth with a decreasing nucleation rate. The apparent increase in crystallization activation energies with increasing Sm content can be one of the affecting factors for commonly held idea of increased glass forming ability for rare-earth containing Zr-based metallic glasses.Article Citation - WoS: 32Citation - Scopus: 37Environmental risk assessment of small hydropower (SHP) plants: A case study for Tefen SHP plant on Filyos River(Elsevier Science Bv, 2014) Kucukali, Serhat; Küçükali, Serhat; 20413; İnşaat MühendisliğiA multi-criteria scoring tool is used to assess the environmental risk level of small hydropower plants on the basis of documented evidence, measured data, and on-site observations. The assessment is based on evaluating compliance with the standards of the European Bank for Reconstruction and Development (EBRD). The following environmental criteria are assessed: environmental flow, water quality, fish passage and protection, watershed protection, threatened and endangered species. I evaluated the Tefen hydropower plant, which has been in operation on the Filyos River in northwestern Turkey since 2011. The assessment showed that the plant failed all of the EBRD criteria. (C) 2013 International Energy Initiative. Published by Elsevier Inc. All rights reserved.Article Citation - WoS: 13Citation - Scopus: 14Experimental and numerical investigation of RC column strengthening with CFRP strips subjected to low-velocity impact load(Techno-press, 2021) Mercimek, Omer; Anil, Ozgur; Ghoroubi, Rahim; Sakin, Shaimaa; Yilmaz, Tolga; 306045Reinforced concrete (RC) square columns are vulnerable to sudden dynamic impact loadings such as the vehicle crash to the bridges of highway or seaway, rock fall, the collision of masses with the effect of flood and landslide. In this experimental study RC square columns strengthened with and without CFRP strip subjected to sudden low velocity lateral impact loading were investigated. Drop-hammer testing machine was used to apply the impact loading to RC square columns. The test specimens were manufactured with square cross sections with 1/3 geometric scale. In scope of the study, 6 test specimens were manufactured and tested. The main variables considered in the study were the application point of impact loading, and CFRP strip spacing. A 9.0 kg mass was allowed to fall freely from a height of 1.0 m to apply the impact loading on the columns. During the impact tests, accelerations, impact force, column mid-point displacements and CFRP strip strains measurements were taken. The general behavior of test specimens, collapse mechanisms, acceleration, displacement, impact load and strain time relationships were interpreted, and the load displacement relationships were obtained. The data from the experimental study was used to investigate the effect of variables on the impact performances of RC columns. It has been observed that the strengthening method applied to reinforced concrete columns, which are designed with insufficient shear strength, insufficient shear reinforcement and produced with low strength concrete, using CFRP strips significantly improves the behavior of the columns under the effect of sudden dynamic impact loading and increases their performance. As a result of the increase in the hardness and rigidity of the specimens strengthened by wrapping with CFRP strips, the accelerations due to the impact loading increased, the displacements decreased and the number of shear cracks formed decreased and the damage was limited. Moreover, the finite element analyses of tested specimens were performed using ABAQUS software to further investigate the impact behavior.Article Citation - WoS: 0Citation - Scopus: 0Experimental Study on the Interaction Between Bridge Pier and Abutment Concerning Clear-Water Local Scour(Springer int Publ Ag, 2023) Akbulut, Omer Faruk; Kokpinar, Mehmet Ali; Gogus, Mustafa; 6062Estimation of scour depth around bridge piers and abutments is essential for safety and economic design in alluvial rivers. Although local scour around bridge piers and abutments has been studied separately by a large number of investigators, there is limited research on the literature related to the interaction between these two structures. Hence, in this study, the aim is to investigate the interaction between bridge abutments and pier scours in detail. For this reason, bridge abutments of different lengths of La = 0.05, 0.10, and 0.15 m and a pier with diameter of D = 0.1 m were placed at various distances from each other in a long sediment channel and tested under clear-water flow conditions with constant flow intensity. All the important dimensionless parameters involved in the interaction phenomenon were derived from theoretical analysis, and the relationships between them were investigated. Analysis of the data showed that the presence of a pier in the flow medium in addition to an abutment has a certain amount of influence on the formation of scour holes around the structures. The influence of the abutment on the pier was more noticeable in the current study, particularly for longer abutments, leading to average increases of up to 20% in scour depth around the pier. The study's findings revealed that the presence of both a pier and an abutment in the flow medium exerted a discernible, unfavorable influence on the development of scour holes, particularly around piers.Article Citation - WoS: 9Citation - Scopus: 12Flow structure and fish passage performance of a brush-type fish way: A field study in the İyidere River, Turkey(Csiro Publishing, 2019) Kucukali, Serhat; Verep, Bulent; Alp, Ahmet; Turan, Davut; Mutlu, Tanju; Kaya, Cuneyt; Ozelci, DursunThe fish passage performance and flow structure of a brush fish pass were investigated at the ncirli Small Hydropower Plant on the yidere River, located in the East Black Sea region of Turkey. The spatial distributions of velocity vectors, power velocity, Froude number and turbulent kinetic energy are presented. The flow is quasi-uniform and subcritical, which provides different migration corridors with favourable hydraulic conditions; importantly for the fish, these corridors continue through the complete fish pass. The flow-bristle interaction creates a reduced velocity and low-turbulence resting zones. In addition, the passage efficiency of the brush fish pass was assessed using passive integrated transponder telemetry. The results clearly showed that upstream passage efficiency differs between fish species: Salmo coruhensis performed better than Alburnoides fasciatus on the same fish passage. The passage efficiency for the target fish species S. coruhensis was calculated to be 82.4%. The data revealed that the brush fish passage provides passage for small-bodied fish (total body length <15 cm) in a high-gradient channel with a slope of 10%. The monitoring data revealed that bristles as flexible hydraulic elements are beneficial for migrating fish.Article Citation - WoS: 1Citation - Scopus: 1Hydraulics of circular bottom intake orifices(Wiley, 2021) Gogus, Mustafa; Bulut, Muhammed; Ucar, Muhammed; 6062In this study, the hydraulic characteristics of circular bottom intake orifices were investigated in a hydraulic model. The structure diverts the river-flow to a hydroelectric power plant through circular orifices located at the bottom of the channel. In the model, a series of circular holes of various diameters and locations at the bottom of a channel in the form of single and multiple holes were tested for different flowrates and screen angles (theta) to determine the flow diverting capacity of them. Discharges passing through orifices at known locations (x) and diameters (d) and screen slopes (theta) were measured and recorded along with the related main channel flow rates and depths (h). Using the dimensional analysis approach, an expression for the flow rate diverted from the main channel was derived as a function of related parameters, and their variations with each other were presented graphically and empirical equations were determined. Referring to the graphs and empirical equations, one can determine the discharge capacity of single and multiple intake orifices, which is important to calculate the amount of flow to be diverted from the main channel within the ranges of the related parameters used in this study.Article Citation - WoS: 1Citation - Scopus: 1Improved Equations for the Profile of a Vertical Air-Core Vortex(Korean Society of Civil Engineers-ksce, 2023) Tastan, Kerem; Yıldırım, Nevzat; Yildirim, Nevzat; 12654; İnşaat MühendisliğiThe available formulas for the profile of a vertical non-air-entraining vortex are not practical because they involve unknown parameters and need measurements of the local viscous-core radii across the height of the air-core vortex. Also, these formulas can not be used for the air-entraining vortices. In the present study, the available formulas involving unknown parameters were further improved. Findings are as follows. 1) the magnitudes of the unknown parameters vary across the height of the profile of the air-core vortex and they are the function of the ratio of the height of the air-core vortex to the submergence of the intake; 2) simple charts and formulas were obtained for the variations of the unknown parameters for the air-core vortices with and without an intake; 3) in lieu of the local viscous-core radius, the radius at the half-depth of the profile of the air-core vortex was used; 4) no laborious work of measurements are needed to determine the local viscous-core radii along the profile of the vortex; and 5) the improved formulas are in good agreement with available test data for the profiles of both the non-air-entraining and the air-entraining vortices with or without a vertically flowing downward intake.Article Citation - WoS: 0Citation - Scopus: 0Liquefaction hazard assessment in a GIS environment: A case study of Buğday Pazarı neighborhood in Çankırı province(Techno-press, 2024) Yurdakul, Eren; Öztürk, Şevki; Ozturk, Sevki; Sarifakioglu, Ender; 163874; İnşaat MühendisliğiSeismic movements have varying effects on structures based on characteristics of local site. During an earthquake, weak soils are susceptible to damage due to amplified wave amplitudes. Soil -structure interaction issue has garnered increased attention in T & uuml;rkiye, after devastating earthquakes in Kocaeli G & ouml;lc & uuml;k (1999), Izmir (2020), Kahramanmara Pazarc & imath;k and Elbistan (2023). Consequently, liquefaction potential has been investigated in detail for different regions of T & uuml;rkiye, mainly with available field test results. & Ccedil;ank & imath;r & imath;, a city located close to North Anatolian Fault, is mainly built on alluvium, which is prone to liquefaction. However, no study on liquefaction hazard has been conducted thus far. In this study, groundwater level map, SPT map, and liquefaction risk map have been generated using Geographical Information System (GIS) for the Bu & gbreve;day Pazar & imath; District of & Ccedil;ank & imath;r & imath; province. Site investigations studies previously performed for 47 parcels (76 boreholes) were used within the scope of this study. The liquefaction assessment was conducted using Seed and Idriss's (1971) simplified method and the visualization of areas susceptible to liquefaction risk has been accomplished. The results of this study have been compared with the City Council's precautionary map which is currently in use. As a result of this study, it is recommended that minimum depth of boreholes in the region should be at least 30m and adequate number of laboratory tests particularly in liquefiable areas should be performed. Another important recommendation for the region is that detailed investigation should be performed by local authorities since findings of this study differ from currently used precautionary map.Article Citation - WoS: 13Citation - Scopus: 13Novel bond-slip model between concrete and angular CFRP fan type anchoraged CFRP strip(Taylor & Francis Ltd, 2022) Ghoroubi, Rahim; Mercimek, Omer; Sakin, Shaimaa; Anil, OzgurOne of the most important design approaches in the repairing/strengthening details is using CFRP (Carbon Fiber Reinforced Polymer) to delay the debonding of the CFRP strips/plates from the surface to take full advantage of the CFRP reinforcement. Compared to non-anchored strips, research studies regarding bond-slip models developed for fan type CFRP anchors and anchored CFRP strips to strengthen details are limited in the related literature review. However, in studies on this subject, anchors are placed at 90 degrees to the axial tensile force applied to the CFRP strips. The ultimate load-bearing capacity and bond-slip models of CFRP strips with the different angled CFRP fan type anchor under axial tensile force have not been found in the literature review. Within the study's scope, 28 angled CFRP strip test specimens were produced and then tested under the effect of monotonically increasing axial tensile force with an experimental setup designed by the authors. The variables examined in this study were the concrete compressive power, the CFRP strip's width, the number of the CFRP anchor fan type, and the angle of the anchor placed on the CFRP strip. As a result of the study, an equation was proposed for calculating the ultimate load-bearing capacity of angled anchored CFRP strips and angled anchored CFRP strips. Finally, a new proposal for the bond-slip model was developed. It is thought that the new interface bond-slip model developed for CFRP strips with different angles will make an important contribution to the literature. It can be used in finite element analysis to realistically analyze the capacities and load-displacement behavior of reinforced concrete structural elements by strengthening such strips.Article Citation - WoS: 3Citation - Scopus: 3Numerical and experimental modelling of flow at Tyrolean weirs(Elsevier Sci Ltd, 2021) Yildiz, Ali; Marti, Ali Ihsan; Gogus, Mustafa; 6062In this study, a small-scaled Tyrolean weir model was constructed in the laboratory environment and a series of experiments were conducted on it, for two different rack inclinations (theta(1) = 18 degrees and theta(2) = 25 degrees) and three different bar spacings (e(1) = 3 mm, e(2) = 6 mm and e(3) = 10 mm) for a range of upstream flow discharges. The flow rates passing through the racks and going downstream over the racks were measured. Empirical equations for the discharge coefficient and water capture capacity of the Tyrolean weirs were determined by applying dimensional analysis to the parameters involved in the phenomenon. The related dimensionless parameters were presented with graphs and empirical equations for discharge coefficients were derived, coefficient of determination R-2 of equations for theta(1) = 18 degrees and theta(2) = 25 degrees are found 0.838 and 0.825 respectively. According to results obtained from experimental data, C-d increases as the Froude number ((F-r)(e)) between bars increases and water capture capacity [(q(w))(i)/(q(w))(T)] of the racks decreases with increasing ((F-r)(e)). Also, a numerical model of the Tyrolean weir was generated by using Flow-3D software and it was shown that the results of the numerical analysis were very consistent with the physical model results at large bar spacing such as e = 10 mm. As the bar spacing (e) reduces, the success of the numerical model giving consistent results with physical model is decreasing.Article Citation - WoS: 0Citation - Scopus: 0Persisting challenges for performance-based building assessment(Springer, 2014) Bayhan, B.; Kazaz, I.; Gulkan, P.Intense research and refinement of the tools used in performance-based seismic engineering have been made, but the maturity and accuracy of these methods have not been adequately confirmed with actual data from the field. The gap between the assumed characteristics of actual building systems and their idealized counterparts used for analysis is wide. When the randomly distributed flaws in buildings as they exist in urban areas and the extreme variability of ground motion patterns combine, the conventional procedures used for pushover or dynamic response history analyses seem to fall short of reconciling the differences between calculated and observed damage. For emergency planning and loss modeling purposes, such discrepancies are factors that must be borne in mind. Two relevant examples are provided herein. These examples demonstrate that consensus-based analytical guidelines also require well-idealized building models that do not lend themselves to reasonably manageable representations from field data. As a corollary, loss modeling techniques, e.g., used for insurance purposes, must undergo further development and improvement.Article Citation - WoS: 13Citation - Scopus: 16Use of Uhpc In Bridge Structures: Material Modeling and Design(Hindawi Ltd, 2012) Gunes, Oguz; Güneş, Oğuz; Yesilmen, Seda; Gunes, Burcu; Ulm, Franz-Joseph; 160252; İnşaat MühendisliğiUltra-high-performance concrete (UHPC) is a promising new class of concrete material that is likely to make a significant contribution to addressing the challenges associated with the load capacity, durability, sustainability, economy, and environmental impact of concrete bridge infrastructures. This paper focuses on the material modeling of UHPC and design of bridge girders made of UHPC. A two-phase model used for modeling the behavior of UHPC was briefly discussed, and the model was implemented in a preliminary design case study. Based on the implemented design and the reported use of UHPC in bridge applications, the advantages, limitations, and future prospects of UHPC bridges were discussed, highlighting the need for innovative research and design to make optimum use of the favorable properties of the material in bridge structures.