Fizik Bilim Dalı Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/4363
Browse
Browsing Fizik Bilim Dalı Yayın Koleksiyonu by Scopus Q "Q2"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Article Citation - WoS: 3Citation - Scopus: 2Characterization of linear and nonlinear optical properties of NaBi(WO4)2 crystal by spectroscopic ellipsometry(Elsevier, 2024) Isik, M.; Güler, İpek; Guler, I.; Gasanly, N. M.; 101531; Ortak Dersler BölümüNaBi(WO4)2 compound has been a material of considerable attention in optoelectronic applications. The present research, in which we examined the linear and nonlinear optical properties of NaBi(WO4)2 crystal using the spectroscopic ellipsometry method, elucidates the optical behavior of the crystal in detail. Our work provides a sensitive approach to determine the spectral characteristic of the crystal. The spectral dependence of various optical parameters such as refractive index, extinction coefficient, dielectric function and absorption coefficient was reported in the range of 1.2-5.0 eV. Optical values such as bandgap energy, critical point energy, single oscillator parameters were obtained as a result of the analyses. In addition to linear optical properties, we also investigated the nonlinear optical behavior of NaBi(WO4)2 and shed new light on the potential applications of the crystal. Absorbance and photoluminescence spectra of the crystal were also reported to characterize optical, electronic and emission behavior of the compound. Our findings may form the basis for a number of technological applications such as optoelectronic devices, frequency conversion, and optical sensors. This research contributes to a better understanding of the optical properties of NaBi(WO4)2 crystal, highlighting the material's role in future optical and electronic technologies.Article Citation - WoS: 3Citation - Scopus: 3Characterization of N Rich-Silicon Nitride Thin Films Deposited by PECVD(Electrochemical Soc inc, 2023) Guler, I.; Güler, İpek; 101531; Ortak Dersler BölümüSilicon nitride thin films are very important for their possible use in semiconductor industry and electronic applications. Changing the deposition parameters, silicon nitrides which have many varying optical properties can be produced. In this work, silicon nitride (SiNx) thin films were deposited on silicon substrates using Plasma enhanced chemical vapor deposition (PECVD) technique. The silane (SiH4) and ammonia (NH3) were used as reactant gases. Using these reactant gases, nitrogen (N) rich SiNx films were obtained. In order to get information about absorption and bond types in the films, films were analyzed by the help of Fourier transform infrared spectroscopy (FTIR) was performed. The refractive index, extinction coefficient and band gap energy of the films were changed from 1.86, 0 and 5.38 eV to 2.05, 0.0048 and 4.26 eV, respectively. Using the refractive index, composition of the films were estimated that is [N]/[Si] ratio of the films varied from 1.38 to 1.62. For possible applications of the SiNx films, learning the origin of the light-emission of the films is very important so the photoluminescence (PL) measurements were also used to see the luminescent of the SiNx films which is related to the electronic transitions between the K-center level and the conduction band tail states.Article Citation - WoS: 6Citation - Scopus: 6Exploring the linear and nonlinear optical behavior of (TlInS2)0.75(TlInSe2)0.25: Insights from ellipsometry measurements(Elsevier, 2023) Isik, M.; Güler, İpek; Guler, I.; Gasanly, N.; 101531; Ortak Dersler BölümüThe search for layered structured new semiconductor materials with remarkable optical properties has become a driving force, especially for materials science. Tl2In2S3Se [(TlInS2)0.75(TlInSe2)0.25], a fascinating compound, holds great promise for advanced photonic and optoelectronic applications. In the present study, the linear and nonlinear optical properties of Tl2In2S3Se layered single crystals were studied by ellipsometry measurements. The variation of refractive index, extinction coefficient, absorption coefficient and skin depth with energy were investigated. Applying the derivative analysis technique to the absorption spectrum, indirect bandgap was found as 2.19 eV. The refractive index data was analyzed considering single-effective-oscillator model. The lattice dielectric constant, plasma frequency, carrier density to the effective mass ratio and zero-frequency refractive index were found. Moreover, the change in optical conductivity with energy yielded to determine the direct bandgap as 2.40 eV. The optical parameters of nonlinear refractive index, first-and third-order nonlinear susceptibilities were also reported.Article Citation - WoS: 4Citation - Scopus: 5Growth and temperature tuned band gap characteristics of NaBi(MoO4)2 single crystal(Iop Publishing Ltd, 2023) Isik, M.; Guler, I; Gasanly, N. M.; 101531Structural and optical properties of double sodium-bismuth molybdate NaBi(MoO4)(2) semiconductor compound was investigated by x-ray diffraction, Raman and transmission experiments. From the x-ray diffraction experiments, the crystal that has tetragonal structure was obtained. Vibrational modes of the crystal were found from the Raman experiments. Transmission experiments were performed in the temperature range of 10-300 K. Derivative spectroscopy analysis and absorption spectrum analysis were performed to get information about the change in band gap energy of the crystal with temperature. It was observed that the band gap energies of the crystal at different temperatures obtained from these techniques are well consisted with each other. By the help of absorption spectrum which was obtained from transmission measurements performed at varying temperatures, absolute zero value of the band gap and average phonon energy as 3.03 +/- 0.02 eV and Eph = 24 +/- 0.2 meV, respectively. Moreover, based on absorption spectrum analysis the Urbach energy of the crystal was obtained as 0.10 eV.Article Citation - WoS: 9Optical analysis of TlInS2xSe2(1-x) mixed crystals(Amer inst Physics, 2014) Güler, İpek; Guler, I.; 101531; Ortak Dersler BölümüThe ellipsometry measurements were carried out on TlInS2xSe2(1-x) mixed crystals in the spectral range of 1.5-6.0 eV at room temperature. The refractive index, extinction coefficient, real and imaginary parts of dielectric function were found as a result of ellipsometric measurements. The energies of interband transitions (critical point energies) of the TlInS2xSe2(1-x) mixed crystals were obtained by means of the second derivative of the real and imaginary parts of dielectric function. The variation of the critical point energies with the isomorphic anion substitution that is sulfur for selenium atoms was established. (C) 2014 AIP Publishing LLC.Article Citation - WoS: 3Citation - Scopus: 3Optical characterization of (TlInS2)0.5(TlInSe2)0.5 crystal by ellipsometry: linear and optical constants for optoelectronic devices(Springer, 2023) Guler, I.; Isik, M.; Gasanly, N.; 101531TlInSSe [(TlInS2)(0.5)(TlInSe2)(0.5)] crystals have garnered significant attention as promising candidates for optoelectronic applications due to their exceptional optoelectrical characteristics. This study focused on investigating the linear and nonlinear optical properties of TlInSSe layered single crystals through ellipsometry measurements. The X-ray diffraction analysis revealed the presence of four distinct peaks corresponding to a monoclinic crystalline structure. In-depth analysis was conducted to examine the variations of refractive index, extinction coefficient, and complex dielectric function within the energy range of 1.25-6.15 eV. By employing derivative analysis of the absorption coefficient and utilizing the Tauc relation, the indirect and direct bandgap energies of TlInSSe crystals were determined to be 2.09 and 2.26 eV, respectively. Furthermore, this research paper presents findings on oscillator energy, dispersion energy, Urbach energy, zero and high frequency dielectric constants, plasma frequency, carrier density to effective mass ratio, nonlinear refractive index, and first-order and third-order nonlinear susceptibilities of TlInSSe crystals.Article Citation - WoS: 0Citation - Scopus: 0Raman wavenumbers calculated as a function of pressure from the mode Gruneisen parameter of PZT (x=0.48) ceramic close to the monoclinic-cubic transition(World Scientific Publ Co Pte Ltd, 2019) Kiraci, A.; Kiracı, Ali; 42475; Ortak Dersler BölümüThe isothermal mode Gruneisen parameter gamma(T)(P) of some Raman modes in PbZr1-xTixO3 (PZT, x = 0.48) were calculated as a function of pressure by means of the observed pressure-dependent volume data of PZT (x = 0.48) crystal from the literature at room temperature of 298 K. Those calculated values of gamma(T)(P) were then used to compute the pressure dependence of the Raman modes in PZT (x = 0.48) ceramic studied here. The observed and calculated values of the Raman wavenumbers in PZT were in good agreement, which indicates that the isothermal mode Gruneisen parameter can also be used to predict the pressure-dependent wavenumbers of some other perovskite-type crystals. Additionally, the pressure dependence of the thermodynamic quantities such as isothermal compressibility kappa(T), thermal expansion alpha(P) and the specific heat C-P - C-V of PZT (x = 0.48) ceramic were predicted at constant temperature of 298 K. Here, the experimentally measurable thermodynamic quantities calculated for PZT (x = 0.48) ceramics provide theoretically a significant opportunity for testing.Article Citation - WoS: 1Citation - Scopus: 2Spectroscopic ellipsometry studies of optical properties of TlIn(S0.25Se0.75)2 crystal(Springer Heidelberg, 2023) Guler, I.; Isik, M.; Gasanly, N.; 101531The optical properties of TlIn(S0.25Se0.75)(2) crystals were studied by ellipsometry measurements. X-ray diffraction pattern presented well-defined peaks associated with monoclinic structure. Energy dependent graphs of various linear optical parameters of the crystal were presented in the 1.25-4.50 eV range. The band gap and Urbach energies of the compound were found as 1.96 and 0.68 eV, respectively, from the analyses of the absorption coefficient. Refractive index spectrum was analyzed considering the single-effective-oscillator model to get oscillator and dispersion energies, zero and high frequency dielectric constants, plasma frequency. Moreover, the nonlinear refractive index, first-order and third-order nonlinear susceptibilities of TlIn(S0.25Se0.75)(2) crystal were revealed in the present paper.Article Citation - WoS: 1Citation - Scopus: 3Structural and optical properties of (TlInS2)0.75(TlInSe2)0.25 thin films deposited by thermal evaporation(Springer, 2023) Guler, I.; Isik, M.; Gasanly, N.; 101531Layered semiconductor materials have become a serious research topic in recent years, thanks to their effective optical properties. In this article, the thin-film structure of Tl2In2S3Se [(TlInS2)(0.75)(TlInSe2)(0.25)] material with layered structure was grown by thermal evaporation method. The structural, morphological, and optical properties of the deposited thin films were examined. X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS) and atomic force microscopy (AFM) techniques were used to get information about structural and morphological properties of the thin films. XRD pattern presented well-defined peaks associated with monoclinic crystalline structure. The crystallite size, dislocation density, and lattice strain of the films were also obtained from the analyses of XRD pattern. EDS analysis showed that atomic compositional ratios of the Tl, In, S, and Se elements are consistent with chemical formula of Tl2In2S3Se. The optical characterization of thin film was performed using transmission and Raman spectroscopy techniques. Raman spectrum offered information about the vibrational modes of the thin film. The analyses of the transmission spectrum presented the indirect and direct band gap energies of the Tl2In2S3Se thin film as 2.23 and 2.52 eV, respectively. The further analyses on the absorption coefficient resulted in Urbach energy of 0.58 eV.Article Citation - WoS: 4Citation - Scopus: 6Structural and optical properties of thermally annealed thallium indium disulfide thin films(Elsevier Science Sa, 2020) Guler, I; Güler, İpek; Gasanly, N.; 101531; Ortak Dersler BölümüStructural and optical properties of thallium indium disulfide (TlInS2) thin films, deposited by thermal evaporation technique and thermally annealed at different temperatures, were analyzed. Crystallite size, dislocation density and lattice strain of the thin films were found from X-ray diffraction experiments. The atomic compositions of the films were determined from energy dispersive spectroscopy analysis. Surface morphology of the films was analyzed using atomic force microscopy. From room temperature transmittance spectrum, the band gap energies of the films were identified. The decrease in band gap energies of the films with the annealing temperature up to 300 degrees C was observed due to increase in crystallite size and decrease in lattice strain. From Raman measurements, it was observed that the Raman shifts of the films were well correlated with those of TlInS2 bulk crystal.