Fizik Bilim Dalı Yayın Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/4363
Browse
Browsing Fizik Bilim Dalı Yayın Koleksiyonu by Subject "Critical Exponent"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article A phenomenological study on ferroelectric β-glycine(2021) Kiracı, A; 42475The anomalous behavior of the specific heat for (Formula presented.) -glycine was analyzed in terms of the compressible Ising model approximately 5 K below and above the ferrelectric-paraelectric phase transition temperature of TC = 252 K. The obtained value of the critical exponent (Formula presented.) = 0.12 in the ferroelectric phase (T < TC) was consistent with that predicted from the 3-d Ising model ((Formula presented.) = 0.13), while the obtained value of (Formula presented.) = 0.32 in the paraelectric phase (T > TC) was consistent with that predicted from the 2-d potts model ((Formula presented.) = 0.30). Some thermodynamic quantities such as the internal energy, the entropy and the free energy of (Formula presented.) -glycine were then predicted in terms of these extracted values of the critical exponents close to the phase transition temperature of TC. Our calculated values of the thermodynamic quantities are in good agreement with the observed data.Article Analysis of the specific heat and the free energy of [N(CH3)(4)](2)ZnBr4 close to the ferro-paraelastic phase transition(2019) Kiracı, Ali; 42475A power-law formula deduced from the Ising model was used to analyze the temperature dependence of the specific heat and the Gibbs free energy of [N(CH3)(4)](2)ZnBr4 compound in the vicinity of the phase transition temperature of T-C = 287.2 K. Obtained values of the critical exponents from the Gibbs free energy were consistent with that predicted from 2-d potts model ( = 0.3), while obtained values of from the specific heat in both ferroelastic and paraelastic phases were consistent with that predicted from the mean field theory ( = 0) in the vicinity of the phase transition temperature. This is an indication of that [N(CH3)(4)](2)ZnBr4 compound undergoes a second order type phase transition. Also, the enthalpy () and the entropy () of this crystal were calculated in terms of the extracted values of the critical exponent in both ferroelastic and paraelastic phases.Article Phenomenological approaches on the Nd3+ doped ferroelectric LaBGeO5(2021) Kiracı, Ali; Kiracı, Ali; Yurtseven, HamitTwo phenomenological models, namely the compressible Ising model and Landau model, have been used to analyze the specific heat and the dielectric constant data, respectively for the pure and Nd3+ doped LaBGeO5 (LBG) crystals. The critical exponent of the specific heat was extracted in both ferroelectric and paraelectric phases of the crystals studied here within the temperature intervals of (Formula presented.) The extracted values of the critical exponent were then used to predict some thermodynamic quantities such as the enthalpy, entropy, and the Gibbs free energy. Regarding the analysis of dielectric constant data within the framework of the Landau theory, the observed values of the birefringence were associated with the order parameter below the transition temperature Tc. The Landau coefficients (Formula presented.) and (Formula presented.) were determined. Our results indicate a second-order phase transition mechanism.Article Phenomenological Study of Manganese Antimonite Close to the Néel Temperature(2021) Kiracı, AliThe anomalous behavior of the frequency $f$ and specific heat ${C_p}$ data for the new layered trigonal ($P\bar{3}1m$) form of manganese antimonite (MnSb2O6) was analyzed by means of the power-law relations with the critical exponent $\alpha $ in the vicinity of the Néel temperature of ${T_{\rm{N}}}$= 8.0 K. While the extracted values of $\alpha $ from both $f$ and ${C_p}$ below $T_{\rm{N}}$ (the same value of 0.06) match exactly the value 1/16 (= 0.06) predicted from the three-dimensional (3-D) Ising model, the extracted value of 0.65 from the ${C_p}$ data above $T_{\rm{N}}$ is much higher than the predicted value of 1/8 (= 0.13) from the 3-D Ising model. As an extension of this work, the temperature dependence of the muon-spin relaxation rate (damping constant) $\lambda $ of MnSb2O6 was calculated from the pseudospin-phonon-coupled (PS) model and the energy fluctuation (EF) model below $T_{\rm{N}}$. Our results are in good agreement with the data. In addition, the activation energy was calculated from the predicted values of $\lambda $ from both PS and EF models for MnSb2O6. Our results indicate an order-disorder-type transition at $T_{\rm{N}}$= 8.0 K for MnSb2O6.