Mekatronik Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/20
Browse
Browsing Mekatronik Mühendisliği Bölümü by Title
Now showing 1 - 20 of 99
- Results Per Page
- Sort Options
Article A comparison of iterative Fourier transform algorithms for image quality estimation(2018) Alsaka, Dina Yaqoob; Arpali, Çağlar; Arpali, Serap Altay; 20809A comparison was established between two iterative Fourier transform algorithms (IFTAs), such as the original Gerchberg–Saxton (GS) and the mixed-region amplitude freedom (MRAF) algorithms, for the hologram reconstruction of different target images through the full reference image quality estimation (IQE) and pixel homogeneity in the Fourier plane presented theoretically and experimentally. The comparison was applied depending upon both algorithms based on a computer-generated hologram (CGH) implemented utilizing a reflective phase-modulated liquid-crystal spatial light modulator (LC-SLM) to obtain the digital kinoform holograms of the desired intensity distributions. These digital holograms were applied to reconstruct the intensity patterns for 852 nm, which represents a laser beam source. The theoretical and experimental results of the reconstructed patterns obtained using the MRAF algorithm were found to be smoother and better than the patterns obtained using the GS algorithm. Unmodulated light beam (dc term) is removed from the reconstructed patterns attributed to digital kinoform holograms of MRAF algorithm as an alternative to the theoretical and experimental results without using any additional optic equipment at the light path. Moreover, this paper discussed the full reference objective quality estimations, such as mean square error (MSE), peak signal-to-noise ratio (PSNR), structural content (SC), normalized absolute error (NAE), normalized cross correlation (NK), and homogeneity of pixels, through the contrast (Cont) and inverse difference moment (IDM) for numerical and experimental results. According to the two desired intensity distributions processed theoretically and experimentally, the results of MRAF algorithm were found to be in the highly accurate recovered phase, the quality of image was enhanced, and the dc term was decreased. Image quality estimation of full reference objective relay on the feedback algorithms experimental attestation has not been implemented yet.Book Part A configurable CAN FD controller: architecture and implementation(IEEE, 2017) Afşin, Mehmet Ertuğ; Schmidt, Klaus Werner; Schmidt, Ece GüranCAN FD is a new standard which provides fast. data rate while preserving the compatibility with CAN (controller area network). In this paper, a Configurable IP core architecture (A-CAN) which is compatible with the CAN FD standard, is proposed. Different than existing CAN/CAN FD controllers, the numbers and sizes of transmit and receive buffers of A-CAN can be configured in run time. To this end, A-CAN enables the best use of single controller hardware for different applications and enables improving the real time communication performance. A CAN communicates with the host device over SPI without any specific interface requirements. A-CAN is implemented on an FPGA Evaluation Board and its functionally is verified at a rate of 2 Mbps.Book Part A new multi-agent decision making structure and application to model-based fault diagnosis problem(IEEE, 2017) Leblebicioğlu, Kemal; Zengin, Yasin; Schmidt, Klaus WernerA new hierarchical multi-agent decision-making structure has been proposed. There are two phases of the structure. The first phase is the construction phase where the decision making structure consisting of switching and classification agents is built on the training data set generated by the system scenarios. In construction phase, switching and classification agents are trained and made ready for decision making. In the decision phase, which is the second phase, the class of the new data sample is decided. This process is carried out by the transmission of the data sample to the correct classifier agent by the switching agents and the classification by the classifier agent. The proposed structure is applied to a complex fault identification problem and a successful result is obtained. The structure is also adaptable to other big data decision making problems.Conference Object Citation - Scopus: 5Abstraction-Based Supervisory Control for Recon-Gurable Manufacturing Systems(IFAC Secretariat, 2013) Khalid, H.M.; Kirik, M.S.; Schmidt, K.W.; 271229Reconfiguration control for discrete event systems (DES) is concerned with the realization of different system configurations by modification of the supervisory control loop. In this paper, we study the reconfiguration supervisor design for reconfigurable manufacturing systems (RMS) that comprise multiple components. We construct a modular supervisor for each configuration and system component in order to realize each active configuration and to quickly change between configurations. Different from the existing literature that is focused on monolithic design, our method is abstraction-based, and, hence applicable to large-scale DES. © 2013 IFAC.Conference Object Citation - WoS: 1Citation - Scopus: 3Analytical Solution of Thermal Stresses in a Functionally Graded Solid Cylinder Within Parabolic Continuous Grading(Trans Tech Publications Ltd, 2013) Gulgec, Mufit; Ozturk, Ali; 4168This paper presents analytical solutions of the thermal stresses in a functionally graded solid cylinder with fixed ends in elastic region. These thermal stresses are due to the uniform heat generation inside the cylinder. Material properties of the functionally graded (FG) cylinder vary radially according to a parabolic form. The material properties are assumed to be independent of the temperature which are yield strength, elasticity modulus, thermal conduction coefficient, thermal expansion coefficient and Poisson's ratio. The solutions for the thermal stresses are valid for both homogeneous and functionally graded materials.Conference Object Citation - Scopus: 12Applied Supervisory Control for a Flexible Manufacturing System(IFAC Secretariat, 2010) Moor, T.; Schmidt, K.; Perk, S.This paper presents a case study in the design and implementation of a discrete event system (DES) of real-world complexity. Our DES plant is a flexible manufacturing system (FMS) laboratory model that consists of 29 interacting components and is controlled via 107 digital signals. Regarding controller design, we apply a hierarchical and decentralised synthesis method from earlier work in order to achieve nonblocking and safe closed-loop behaviour. Regarding implementation, we discuss how digital signals translate to discrete events from a practical point of view, including timing issues. The paper demonstrates how both, design and implementation, are supported by the open-source software tool libFAUDES.Article Citation - WoS: 12Citation - Scopus: 12Averaging of Receiver Aperture for Flat-Topped Incidence(Elsevier Sci Ltd, 2013) Kamacioglu, Canan; Baykal, Yahya; Yazgan, Erdem; 7812Using a flat-topped profile for the incident beam, the power scintillation index for weak atmospheric turbulence is formulated and analytically evaluated. Through the use of the aperture averaging factor, the averaging effect of the finite receiver aperture on the intensity fluctuations for a flat-topped incident beam is examined. The influence of the order of flatness on the averaging is investigated. At large propagation lengths, increasing the flatness parameter decreases the power scintillations and it is possible to further reduce the scintillation by increasing the receiver aperture. Increasing the structure constant increases this effect. (C) 2013 Elsevier Ltd. All rights reserved.Conference Object Çekilebilir Sahte Hedef Etkinliğinin Modelleme Ve Simülasyon İle Analizi(2019) Özbilge, Kubilay; Ergezer, Halit; 293396; 293396Sahte hedefler, uçağın savaş alanında hayatta kalmasını artırmak için radar güdümlü füzeden korumak için kullanılan bir savunma yöntemlerindendir. Bu çalışmada savaş uçaklarında kullanılan çekilebilir aktif sahte hedeflerin uçağın hayatta kalabilirliğine etkisi, uçağın çekilebilir sahte hedef kullandığı ve kullanmadığı durumlar için vurulma olasılıkları ve füzenin kaçırma uzaklığı değerleri hesaplanarak analiz edilmiştir. Çalışmamızda açık kaynaktan elde edilen veriler kullanılmıştır. Jenerik yapıda kurgulanan savaş uçağı modeli, çekilebilir sahte hedef modeli ve radar modeli ile elde edilen veriler sunulmuştur. Benzetim sonuçları çekilebilir aktif sahte hedef kullanımının savaş uçaklarına özellikle angajmanın son safhasında koruma sağladığını ortaya koymaktadır.Article Citation - WoS: 1Citation - Scopus: 2Classification of Low Probability of Intercept Radar Waveforms Using Gabor Wavelets(Gazi Univ, Fac Engineering Architecture, 2021) Ergezer, Halit; 29339Low Probability of Intercept (LPI Radar) is a class of radar with specific technical characteristics that make it very difficult to intercept with electronic support systems and radar warning receivers. Because of their properties as low power, variable frequency, wide bandwidth, LPI radar waveforms are difficult to intercept by ESM systems. In recent years, studies on the classification of waveforms used by these types of radar have been accelerated. In this study, Time-Frequency Images (TFI) has been obtained from the LPI radars waveforms by using Choi-Williams Distribution method. From these images, feature vectors have been generated using Gabor Wavelet transform. In contrast to many methods in the literature, waveform classification has been performed by directly comparing the feature vectors obtained without using any machine learning method. With the method we propose, classification accuracies were obtained at intervals of 2 dB between -20 dB and 10 dB and performed at reasonable classification accuracy rates up to -8 dB SNR value. Better results than the best reported in the literature were obtained for some signal types. The results obtained for all waveform types are given in comparison with the results of the existing methods in the literature.Article Clothoid-based Lane Change Trajectory Computation for Self-Driving Vehicles(2017) Mohammed Ali Kahya, Ardam Haseeb; Schmidt, Klaus WernerThe subject of this paper is the efficient computation of lane change trajectories for self-driving vehicles. The paper first identifies that a certain type of clothoid-based bi-elementary paths can be used to represent lane change trajectories for vehicles. It is further highlighted that the curvature of such trajectories must be adjusted to the driving situation in order to obtain feasible lane change trajectories. Accordingly, the paper establishes an analytical relation between the maximum admissible curvature of the lane change trajectory and the velocity profile during a lane change. Using this relation, the paper proposes an efficient Newton iteration for computing the parameters of bi-elementary paths for lane changes. The resulting lane change trajectories are as short as possible, while meeting the constraint on the maximum curvature. Simulation experiments for various driving situations show that the computed bi-elementary paths can be computed efficiently and constitute suitable lane change trajectories.Article Çoklu ˙IHA Kullanımı ile Kabloya Asılı Yük Ta¸sınımı Transportation of Cable Suspended Slung Load System Using Multiple UAVs(2022) Can, Süleyman Emre; Leblebicioğlu, M. Kemal; Ergezer, Halit; 293396Bu çalı¸smada, kablolar ile asılı esnemeyen bir yükün ortakla¸sa ta¸sınımı için kontrolcü tasarımı tanıtılmı¸stır. Yük, birden çok insansız hava aracına (˙IHA) yükün kablo ile baglanması ˘ ile ta¸sınmakta olup, istenen üç boyutlu rota üzerinde hareket etmesi saglanmaktadır. Sistemde yük lider olarak alınmaktadır. ˘ Hiyerar¸sik ve merkezcil bir yapıda kontrol edilmektedir. Ta¸sıma görevi, bir optimizasyon problemi olarak ele alınmı¸stır. Sistemi istenen rotada hareket ettirebilmek için bir otopilot algoritması tasarlanmı¸s olup PD yapıları kullanılarak olu¸sturulmu¸stur. Pozisyon kontrolcüsünün çıktısı kontrol atama matrisi tarafından ele alınmaktadır ve uygun kuvvet dagılımını sistemin istenen ˘ davranı¸slarına uygun olacak ¸sekilde türetmektedir. Kontrolcü performansları, takip edilmesi istenen bir rota üzerinde test edilmektedir.Article Citation - WoS: 20Citation - Scopus: 21A Comparison of Iterative Fourier Transform Algorithms for Image Quality Estimation(Optical Soc Japan, 2018) Alsaka, Dina Yaqoob; Arpali, Caglar; Arpali, Serap Altay; 20809A comparison was established between two iterative Fourier transform algorithms (IFTAs), such as the original Gerchberg-Saxton (GS) and the mixed-region amplitude freedom (MRAF) algorithms, for the hologram reconstruction of different target images through the full reference image quality estimation (IQE) and pixel homogeneity in the Fourier plane presented theoretically and experimentally. The comparison was applied depending upon both algorithms based on a computer-generated hologram (CGH) implemented utilizing a reflective phase-modulated liquid-crystal spatial light modulator (LC-SLM) to obtain the digital kinoform holograms of the desired intensity distributions. These digital holograms were applied to reconstruct the intensity patterns for 852 nm, which represents a laser beam source. The theoretical and experimental results of the reconstructed patterns obtained using the MRAF algorithm were found to be smoother and better than the patterns obtained using the GS algorithm. Unmodulated light beam (dc term) is removed from the reconstructed patterns attributed to digital kinoform holograms of MRAF algorithm as an alternative to the theoretical and experimental results without using any additional optic equipment at the light path. Moreover, this paper discussed the full reference objective quality estimations, such as mean square error (MSE), peak signal-to-noise ratio (PSNR), structural content (SC), normalized absolute error (NAE), normalized cross correlation (NK), and homogeneity of pixels, through the contrast (Cont) and inverse difference moment (IDM) for numerical and experimental results. According to the two desired intensity distributions processed theoretically and experimentally, the results of MRAF algorithm were found to be in the highly accurate recovered phase, the quality of image was enhanced, and the dc term was decreased. Image quality estimation of full reference objective relay on the feedback algorithms experimental attestation has not been implemented yet.Article Citation - Scopus: 6The Comparison of Performance of Electrolytic Cu and Cube Tool Electrodes in Electric Discharge Machining of Ti6al4v Alloy(TUBITAK, 2021) Bozkurt, F.; Özerkan, H.B.; Çoğun, C.; Uslan, İ.; Urtekin, L.; 3837The most crucial cost element of Electric Discharge Machining (EDM) is the production of tool electrode (shortly electrode). Copper, its alloys, and graphite are the most commonly used electrode materials. Selecting the proper electrode material with low production and material cost, high workpiece material removal rate (MRR) and low tool electrode wear rate (TWR) is key to reducing machining costs with EDM. In this study, the EDM performance of CuBe tool electrodes in the machining of Ti6Al4V alloy was experimentally investigated in comparison to electrolytic Cu (E-Cu) electrodes for different pulse time (ts) and discharge current (I) settings. An increase in MRR and a decrease in TWR and relative wear (RW=TWR/MRR) were observed in machining with CuBe electrodes. However, the high raw material cost of CuBe alloy is an essential drawback in widely using these electrodes in industrial applications. A new performance index formulation is introduced for EDM applications that factor in the production cost of the electrode and its life (i.e., RW). According to our results, the CuBe could be used advantageously as the electrode material at medium current settings. However, at low and high current settings, the low raw material cost of E-Cu makes it more favorable. © 2021, TUBITAK. All rights reserved.Conference Object Comprehensive Comparison of Various Machine Learning Algorithms for Rf Fingerprints Classification(Institute of Electrical and Electronics Engineers Inc., 2023) Ergezer, H.; Gundogan, B.; 293396In these days, the use of drones has become quite common. Remote controls can do the control of these drones with RF signals. It is important to prevent security vulnerabilities caused by using drones in our daily lives. A complex dataset was created by extracting the characteristics of the RF signals and preprocessing them. To solve this complex data set and problem, the application of models including Support Vector Machine (SVM), Random Forest, Decision Tree, Gradient Boosting, XGBoost and Neural Network (NN) models, including various ML models and comparison of optimization studies of these applied models are examined in this article. In addition, a wide range of studies was carried out to compare ML models, including comparison metrics such as Accuracy, Precision, Recall, Mean Squared Error (MSE), F1 Score, $R^{2}$ and Training Time. In line with these results, the highest score was obtained in the $\mathrm{R}^{2}$ comparison metric (97%) in the Neural Network (NN). Compared to the others, the results of Neural Network (NN) were more successful, but the Training Time (245 sec) in the Neural Network (NN) method is by far more than the other ML methods, which shows us that the NN method requires a very high computing process. As a result of the comparison, another outstanding Ensemble-based ML method is Decision Tree. This is because besides the very low Training Time $(5\sec)$, it has managed to be the 2nd ML algorithm with the highest $\mathrm{R}^{2}$ score (96%). Apart from these, among other ML methods, SVM performed slightly less well $(\mathrm{R}^{2}$ 91%) in solving this complex problem. The advanced Gradient Method (95%) and XGBoost (96%), which also have the Ensemble structure, showed a head-to-head performance regarding $\mathrm{R}^{2}$ scores. However, XGBoost (30 sec) has a very short Training Time compared to Gradient Boosting (180 sec). As a result, the approach of each ML method to solving the complex problem differed from each other, and the success rates and Training Time also differed equally. The most important work to be done here is to choose which ML method you want to achieve according to the limited system in hand and the performance-accuracy dilemma. © 2023 IEEE.Conference Object Citation - Scopus: 8Computation of Fault-Tolerant Supervisors for Discrete Event Systems(IFAC Secretariat, 2013) Sülek, A.N.; Schmidt, K.W.; 17337Fault-tolerance addresses the problem of operating a system even in case of faults. In this paper, we study fault-tolerance in the supervisory control framework for discrete event systems (DES). We consider DES, where certain events might no longer be possible in case a fault happens. In this setting, we first identify necessary and suficient conditions for the existence of a supervisor that realizes a given behavioral specification both in the non-faulty and in the faulty case. We further show that it is possible to determine a supremal fault-tolerant sublanguage in case the existence condition is violated. Finally, we propose an algorithm for the computation of this sublanguage and prove its correctness. Different from existing work, our fault-tolerant supervisor allows fault occurrences and system repairs at any time. The concepts and results developed in this paper are illustrated by a manufacturing system example. © 2013 IFAC.Conference Object Computation of Projections for the Abstraction-Based Diagnosability Verification(IFAC Secretariat, 2010) Schmidt, K.The verification of language-diagnosability (LD) for discrete event systems (DES) generally requires the explicit evaluation of the overall system model which is infeasible for practical systems. In order to circumvent this problem, our previous work proposes the abstraction-based LD verification using natural projections that fulfill the loop-preserving observer (LPO) property. In this paper, we develop algorithms for the verification and computation of such natural projections. We first present a polynomial-time algorithm that allows to test if a given natural projection is a loop-preserving observer. Then, we show that, in case the LPO property is violated, finding a minimal extension of the projection alphabet such that the LPO condition holds is NP-hard. Finally, we adapt a polynomial-time heuristic algorithm by Feng and Wonham for the efficient computation of loop-preserving observers.Conference Object Computation of Reduced Diagnosers for the Fault Diagnosis of Discrete Event Systems(2014) Kart, Bora Eser; Schmidt, KlausMany complex systems in different areas such as manufacturing, telecommunications or transportation can be modeled as discrete event systems (DES). In this paper, we consider the fault diagnosis for DES which is concerned with detecting fault occurrences in a DES within a bounded number of event occurrences by a diagnoser automaton. Hereby, such diagnoser is able to observe a subset of the system events and the maximum required number of event occurrences until a fault detection is denoted as the worst case detection delay (WCDD). The main contribution of the paper is an approach for reducing the number of required observations for fault diagnosis without increasing the WCDD. As a result, it is possible to determine a diagnoser with a small size which is essential in practical applications. We first develop an algorithm for computing the WCDD and then adapt an approach for the reduction of the observable event set in order to obtain a reduced diagnoser. The application of our method to a communication system example demonstrates its practicability.Conference Object Citation - Scopus: 2Computation of Supervisors for Fault-Recovery and Repair for Discrete Event Systems(Univelt Inc., 2014) Sülek, A.N.; Schmidt, K.W.; 17337; 107424In this paper, we study the fault-recovery and repair of discrete event systems (DES). To this end, we first develop a new method for the fault-recovery of DES. In particular, we compute a fault-recovery supervisor that follows the specified nominal system behavior until a fault-occurrence, that continues its operation according to a degraded specification after a fault and that finally converges to a desired behavior after fault. We next show that our method is also applicable to system repair and we propose an iterative procedure that determines a supervisor for an arbitrary number of fault occurrences and system repairs. We demonstrate our method with a manufacturing system example. © IFAC.Article Citation - WoS: 9Citation - Scopus: 10Computation of Supervisors for Reconfigurable Machine Tools(Springer, 2015) Schmidt, Klaus Werner; 17337The rapid reconfiguration of manufacturing systems is an important issue in today's manufacturing technology in order to adjust the production to varying product demands and types. In this paper, we study the control of reconfigurable machine tools (RMTs) with the aim of fast reconfiguration and an easy controller implementation. We first formulate a particular reconfiguration problem for RMTs in a discrete event system setting, and then provide a necessary and sufficient condition for its solution. Moreover, we propose a polynomial-time algorithm for the construction of a reconfiguration supervisor as the composition of one modular supervisor for each separate RMT configuration. Each modular supervisor operates in three modes. In the first mode, it tracks the plant state if its corresponding configuration is inactive. In the second mode, it performs a configuration change if its corresponding configuration becomes active and in the third mode, it follows the specified behavior of its corresponding configuration if the configuration is active. An important property of the proposed reconfiguration supervisor is that it performs reconfigurations in a bounded number of event occurrences. In addition, the modular realization of our reconfiguration supervisor enables controller modifications such as adding or removing configurations during run-time. All results presented in the paper are illustrated by an RMT example.Article Citation - WoS: 2Citation - Scopus: 3Control Structure Design With Constraints for a Slung Load Quadrotor System(Sage Publications Ltd, 2024) Leblebicioglu, Kemal; Ergezer, Halit; 293396We propose a control structure for a quadrotor carrying a slung load with swing-angle constraints. This quadrotor is supposed to pass through the waypoints at specified speeds. First, a cascaded PID autopilot is designed, which adaptively gives attention to position and speed requirements as a function of their errors. Its parameters are found from an optimization problem solved using the PSO algorithm. Second, this controller's performance is improved by adding the Complementary Controller employing an ANN. 5. Training data for the ANN is created by solving optimal control problems. The ANN is activated when the swing angle constraint is about to be violated. It is trained using optimal control values corresponding to the cases where the swing angle falls in a particular band about the upper swing angle constraint. Simulations are performed in a MATLAB environment. Finally, some of the simulation results are validated on a physical system.
