Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

İnşaat Mühendisliği Bölümü Yayın Koleksiyonu

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/395

Browse

Recent Submissions

Now showing 1 - 20 of 133
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Mechanical Characteristics of Environmentally Friendly Permeable Pavement: Enhanced Porous Asphalt
    (Jordan Univ Science & Technology, 2024) Ibis, Ahmet Bugra; Sengoz, Burak; Almusawi, Ali; Ozdemir, Derya Kaya; Topal, Ali
    This study explores the mechanical properties of porous -asphalt pavement, focusing on the influence of various polymers (elastomeric and reactive elastomeric terpolymers) and different aggregate compositions. Two aggregates were utilized: one is exclusively limestone -based and the other is a blend of limestone and basalt aggregates. The research findings unveiled that mixtures containing the conventional bitumen failed to meet the Cantabro loss -test criterion required for porous asphalt, necessitating a maximum threshold of 20%. In contrast, asphalt mixtures modified with polymers exhibited notably superior performance, particularly in terms of permeability, Cantabro loss and the ratio of indirect tensile strength. These results underscore the significant impact of polymer modification on enhancing the crucial mechanical properties of porous asphalt. Therefore, the study suggests the adoption of polymer -modified asphalt as a viable strategy to improve pavement longevity and overall performance, promoting its use for sustainable and durable infrastructure.
  • Article
    Citation - WoS: 0
    Citation - Scopus: 0
    Liquefaction hazard assessment in a GIS environment: A case study of Buğday Pazarı neighborhood in Çankırı province
    (Techno-press, 2024) Yurdakul, Eren; Öztürk, Şevki; Ozturk, Sevki; Sarifakioglu, Ender; 163874; İnşaat Mühendisliği
    Seismic movements have varying effects on structures based on characteristics of local site. During an earthquake, weak soils are susceptible to damage due to amplified wave amplitudes. Soil -structure interaction issue has garnered increased attention in T & uuml;rkiye, after devastating earthquakes in Kocaeli G & ouml;lc & uuml;k (1999), Izmir (2020), Kahramanmara Pazarc & imath;k and Elbistan (2023). Consequently, liquefaction potential has been investigated in detail for different regions of T & uuml;rkiye, mainly with available field test results. & Ccedil;ank & imath;r & imath;, a city located close to North Anatolian Fault, is mainly built on alluvium, which is prone to liquefaction. However, no study on liquefaction hazard has been conducted thus far. In this study, groundwater level map, SPT map, and liquefaction risk map have been generated using Geographical Information System (GIS) for the Bu & gbreve;day Pazar & imath; District of & Ccedil;ank & imath;r & imath; province. Site investigations studies previously performed for 47 parcels (76 boreholes) were used within the scope of this study. The liquefaction assessment was conducted using Seed and Idriss's (1971) simplified method and the visualization of areas susceptible to liquefaction risk has been accomplished. The results of this study have been compared with the City Council's precautionary map which is currently in use. As a result of this study, it is recommended that minimum depth of boreholes in the region should be at least 30m and adequate number of laboratory tests particularly in liquefiable areas should be performed. Another important recommendation for the region is that detailed investigation should be performed by local authorities since findings of this study differ from currently used precautionary map.
  • Article
    Citation - WoS: 0
    Citation - Scopus: 0
    Experimental Study on the Interaction Between Bridge Pier and Abutment Concerning Clear-Water Local Scour
    (Springer int Publ Ag, 2023) Akbulut, Omer Faruk; Kokpinar, Mehmet Ali; Gogus, Mustafa; 6062
    Estimation of scour depth around bridge piers and abutments is essential for safety and economic design in alluvial rivers. Although local scour around bridge piers and abutments has been studied separately by a large number of investigators, there is limited research on the literature related to the interaction between these two structures. Hence, in this study, the aim is to investigate the interaction between bridge abutments and pier scours in detail. For this reason, bridge abutments of different lengths of La = 0.05, 0.10, and 0.15 m and a pier with diameter of D = 0.1 m were placed at various distances from each other in a long sediment channel and tested under clear-water flow conditions with constant flow intensity. All the important dimensionless parameters involved in the interaction phenomenon were derived from theoretical analysis, and the relationships between them were investigated. Analysis of the data showed that the presence of a pier in the flow medium in addition to an abutment has a certain amount of influence on the formation of scour holes around the structures. The influence of the abutment on the pier was more noticeable in the current study, particularly for longer abutments, leading to average increases of up to 20% in scour depth around the pier. The study's findings revealed that the presence of both a pier and an abutment in the flow medium exerted a discernible, unfavorable influence on the development of scour holes, particularly around piers.
  • Conference Object
    Citation - Scopus: 0
    Effects of Floating Rafts as Anti-Vortex Devices at Horizontal Intakes
    (International Association for Hydro-Environment Engineering and Research, 2023) Gogus, M.; Gokmener, S.; 6062
    Air- entraining vortices created by swirling flows on intakes cause serious problems such as; increasing loss of hydraulic load and discharge at water intake structures, loss of efficiency, operational problems, cavitation and vibration problems in hydraulic machines. Hence the position of the intake should be justified for the most critical scenario as the reservoir is at dead or at minimum storage level to avoid the occurrence of air-entraining vortices. Although intakes are designed by considering the formation of air-entraining vortices, they cannot be prevented due to approach flow conditions and submergence. Therefore, some structural changes should be considered in order to avoid the occurrence of air-entraining vortices. One of these methods is using anti-vortex devices to prevent the formation of air-entraining vortices. In this experimental study, floating rafts at different sizes were tested as anti-vortex devices to prevent the formation of air-entraining vortices at single and multiplehorizontal intake structures under symmetrical and asymmetrical approach flow conditions. Three identical pipes of diameter Di=0.265 m were tested at a wide range of discharge with varying sidewall clearances. Experiments were conducted for three different combinations of the intake structures: single, double and triple water intakes were operated, respectively. Different side wall distances in the approach channels of the intake structures were specified previously to create symmetrical and asymmetrical flow conditions. The side walls were located according to these distances before each experiment. For single and double water intake structures, Wraft=10 cm and triple water intake structures, Wraft=20 cm raft width were found to be successful for vortex prevention. Moreover, Wrafts/Di values that gave successful results are 0.38 for single and double intake structures and 0.75 for triple intake structures. © 2023 IAHR – International Association for Hydro-Environment Engineering and Research
  • Article
    Citation - WoS: 6
    Citation - Scopus: 8
    A metaheuristic-guided machine learning approach for concrete strength prediction with high mix design variability using ultrasonic pulse velocity data
    (Elsevier, 2023) Selcuk, S.; Tang, P.
    Assessment of concrete strength in existing structures is a common engineering problem. Several attempts in the literature showed the potential of ML methods for predicting concrete strength using concrete properties and NDT values as inputs. However, almost all such ML efforts based on NDT data trained models to predict concrete strength for a specific concrete mix design. We trained a global ML-based model that can predict concrete strength for a wide range of concrete types. This study uses data with high variability for training a metaheuristic-guided ANN model that can cover most concrete mixes used in practice. We put together a dataset that has large variations of mix design components. Training an ANN model using this dataset introduced significant test errors as expected. We optimized hyperparameters, architecture of the ANN model and performed feature selection using genetic algorithm. The proposed model reduces test errors from 9.3 MPa to 4.8 MPa.
  • Article
    Simulation-based microwave imaging of plain and reinforced concrete for nondestructive evaluation
    (2012) Güneş, Oğuz; Büyüköztürk, Oral; 160252; İnşaat Mühendisliği
    The focus of this paper is the implementation of a backpropagation algorithm as a potential solution for the inverse source problem for microwave imaging of plain and reinforced concrete targets. The data used in imaging was obtained from numerical simulation of far-field microwave scattering by concrete targets using typical frequency bandwidth of commercially available radar systems. A finite difference-time domain (FD-TD) technique was used for the simulations. Electromagnetic (EM) properties of concrete for various moisture conditions were obtained from a previous study. A total of four simulations were performed using a Gaussian pulse wave excitation for dry and moisture saturated concrete cylinders with and without a rebar at the center. The reflected and transmitted fields were recorded along two measurement lines. Images reconstructed using the backpropagation algorithm showed the potential of the method for concrete non destructive testing (NDT) while drawing attention to its limitations mainly due to the linearizing assumptions made in the algorithm's formulation.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 5
    Predicting seismic damage on concrete gravity dams: a review
    (Taylor & Francis Ltd, 2024) Arici, Yalin; Soysal, Berat Feyza; 157572
    The seismic assessment of concrete gravity dams is a problem of prediction of cracking and the corresponding consequences. With the widespread use of general-purpose finite element programs, the work in the field has shifted towards quantifying the behaviour in a framework for assessment. The nonlinear analysis and coupling with foundation-reservoir interaction, conversely, is still a challenging task. The modelling approach has significant effects on the analysis results and the assessment framework. The field remains an active area for research with many outstanding issues regarding damage quantification and assessment compared to any other major infrastructure component. A comprehensive overview of the seismic assessment of gravity dams is presented in this work with the goal to outline the issues in the field. Different models and modelling choices are compared in the context of damaged state assessment of gravity dams. The links between practical difficulties and theoretical issues are critically discussed. The aleatoric and epistemic uncertainties in the field, and their sources, are presented. Areas of future work are identified for improvement in seismic assessment as well as reducing and quantifying the uncertainties in the prediction of damaged states for concrete gravity dams.
  • Book
    The IAEE at fifty : a brief history of the international association for earthquake engineering.
    (International Association for Earthquake Engineering, 2012) Gülkan, Polat; 5743
  • Article
    Orthonormal decomposition of symmetric second rank tensors
    (2010) Dinçkal, Çiğdem; 26773; İnşaat Mühendisliği
    In this paper, a new orthonormal decomposition method for symmetric second rank tensors namely as, orthonormal tensor basis is presented. Complex variable representation method is developed by using the existing theories in literature. For comparison purposes, a brief review of the spectral method is given. It is shown that stress tensor, as an example to symmetric second rank tensors, is decomposed into six orthonormal parts by orthonormal tensor basis and complex variable representation methods. The matrix forms of these decomposed parts are given. This is the first time in literature that physical meanings of each six decomposed parts which are obtained from the orthonormal decomposition of stress tensor by orthonormal tensor basis and complex variable representation methods, different from the traditionally form, are emphasized. Illustrative applications on orthonormal tensor basis and complex variable representation decomposition methods are given. Finally, it is proved that the spectral method is a non-linear decomposition method which yields three non-linear orthonormal decomposed parts. This case is a significant innovation in decomposition procedures for symmetric second rank tensors in literature.
  • Article
    Norm, norm ratio calculations and anisotropy degree
    (2011) Dinçkal, Çiğdem; 26773; İnşaat Mühendisliği
    In this paper, for elastic constant tensor, the norm concept, norm ratio and anisotropy degree are described. The norm of a tensor is used as a criterion for comparing the overall effect of the properties of anisotropic materials and norm ratios are used as a criterion to represent the anisotropy degree of the properties of these materials. Norm and norm ratios as well as the measure of "nearness" to the nearest isotropic tensor are computed for several examples from various anisotropic materials possessing elastic symmetries such as cubic, transversely isotropic, tetragonal, trigonal and orthorhombic. These computations are used to compare and assess the anisotropy in various anisotropic materials by means of strength or magnitude and also determine the "nearness" of the nearest isotropic tensor for the materials with lower symmetry types.
  • Article
    New predictor-corrector type iterative methods for solving nonlinear equations
    (2017) Dinçkal, Çiğdem; 26773; İnşaat Mühendisliği
    Bu makale, nonlineer denklemleri çözmek için, iki yeni öngörme-düzeltme tipi yineli yöntem önerir. Bu yöntemler, iyi bilinen ikiye bölme yöntemi ve Newton-Raphson yönteminin kombinasyonuna dayalı bir şekilde oluşturulmuştur. Çeşitli nümerik örnekler, bu yöntemlerin ana amaçlarını doğrulamaya ve nümerik sonuçlarını karşılaştırmaya hizmet etmektedir. Nümerik sonuçlar, herhangi nonlineer bir denklemin tam köküne ulaşmak için elde edilecek yineleme sayısı cinsinden bu yeni önerilen yöntemlerin yakınsama hızlarını test etmek için de sunulmuştur. Elde edilen bu nümerik sonuçlar, önerilen yeni yöntemlerin iyi bilinen her iki yöntemlerden biri olan ikiye bölme ve NewtonRaphson'dan ve ayrıca literatürdeki diğer yöntemlerden de daha iyi performans gösterdiğine de, işaret etmektedir.
  • Article
    Su alma ağzı giriş şeklinin hava girişli çevrinti üzerindeki ölçek etkisi
    (2018) Taştan, Kerem; Yıldırım, Nevzat; Yıldırım, Nevzat; 12654; İnşaat Mühendisliği
    Su alma ağzı giriş şekli, ağız üzerinde su yüzeyinde oluşabilecek hava girişli çevrintinin karakteristiklerini belirlediğinden ağza ait kritik batıklık üzerinde bazı etkilere sahiptir. Bu etkiler hız dağılımı etkisi ve çevrintiyi besleyen ağız debisi etkisi olarak adlandırılabilir. Bu çalışmada 6 farklı ağız giriş şekline (daire, kare, dikdörtgen, eşkenar dörtgen, eşkenar üçgen, yıldız) ve 40 cm2 ve 100 cm2 olmak üzere iki değişik kesit alanına sahip toplam 12 adet su alma yapısına ait kritik batıklık ve kritik batıklığı etkileyen boyutsuz parametreler (su alma yapısına ait Froude, Reynolds ve Weber sayıları) durgun su ortamında deneysel olarak incelenmiştir. Deney sonuçları neticesinde ağız giriş geometrisinin kritik batıklık üzerinde bir boyut etkisine sahip olduğu görülmüştür. Bu nedenledir ki, her bir farklı ağız giriş geometrisi ve akım şartı, kritik batıklık açısından kendine özgü özellikler taşır. Aynı ağız debisinde farklı su alma ağzı giriş şekillerinin kritik batıklık üzerindeki etkisi ise debi değerine göre değişim göstermektedir.
  • Article
    Studies on the Optimum Mechanical Response of Anısotropıc Materials Related to Elastıc Constants
    (2011) Dinçkal, Çiğdem; 26773; İnşaat Mühendisliği
    In this paper, mechanical and elastic behaviour of anisotropic materials are investigated in order to understand the optimum mechanical behaviour of them in selected directions. For an anisotropic material with known elastic constants, it is possible to choose the best set of elastic constants (effective elastic constants) which determine the optimum mechanical and elastic properties of it. For this reason, bounds on the anisotropic elastic constants have been constructed symbollicaly for all anisotropic elastic symmetries. As illustrative examples, materials from different symmetries are selected and their elastic constants are used to compute bounds on the anisotropic elastic constants. Finally, by examining numerical results of bounds given in tables, it is seen that the materials selected from the same symmetry type which have larger interval between the bounds, are more anisotropic, whereas some materials which have smaller interval between the bounds, are closer to isotropy. The construction of bounds on anisotropic elastic constants is a significant and critical case in design of any engineering and structural materials.
  • Article
    Structural health monitoring and damage assessment Part II: Application of the damage locating vector (DLV) method to the ASCE benchmark structure experimental data
    (2012) Gunes, Burcu; Gunes, Oguz; 160252
    This paper builds on the review of structural health monitoring (SHM) and damage assessment approaches provided in a companion paper by presenting an application of the damage locating vector (DLV) approach to the experimental (Phase II) data obtained from the experimental benchmark structure of the IASC-ASCE task group on SHM, which is a laboratory (scaled) size steel frame. Different damage conditions were simulated in the frame for braced and unbraced configurations, and the DLV technique was used to detect and localize damage. The damage identification results were presented and the successes and limitations of the DLV method in detecting and locating the simulated damages were discussed.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Local scour evolution around semi-circular end bridge abutment in quasi-unsteady condition
    (Ice Publishing, 2022) Gokmener, Serkan; Gogus, Mustafa; 6062
    In this experimental study, the temporal development of local scour is studied around semi-circular end bridge abutments under quasi-unsteady clear-water flow conditions in a rectangular sediment channel. A step-wise hydrograph of 6 h duration is used in the experiments. Six different abutment lengths having constant width, with uniform sand as bed material, were tested for three different successive flows - each applied continuously for 2 h. Bathymetry of the bed level was measured around the abutment every 15 min with the help of a measurement device to observe temporal development of the local scour around the semi-circular end abutment. Effects of the abutment length, flow intensity and time on the scour depths around semi-circular end bridge abutments, along with those at the front, upstream and downstream faces of the abutment, are also investigated and discussed. It is shown that the maximum scour depth always occurs at the front noses of the abutments compared with those at the upstream and downstream noses. A dimensionless empirical formula is derived to predict the scour depth at the front nose of the abutment as a function of related parameters. The results reveal that flow intensity is the most critical parameter in scour development.
  • Conference Object
    Vulnerability assessment of two instrumented masonry buildings in Antakya
    (2012) Genes, M.C.; Erberik, A.M.; Abrahamczyk, L.; Gülkan, Polat; Bikce, M.; Kacin, S.; Yakut, A.; Schwarz, J.; 5743
  • Conference Object
    The Fatih Project: A Pilot Seismic Assessment of the Architectural Heritage in the Historic Peninsula of Istanbul
    (2011) Gülkan, Polat; Sozen, M.A.; Yakut, A.; Celep, Z.; Güler, K.; Kubin, J.; Kubin, D.; Eroğlu, E.; İrfanoğlu, A.; Ahunbay, Z.; 5743
  • Conference Object
    Seismic behavior of a four-legged masonry minaret
    (2012) Kazaz, İ.; Akansel, V.; Gülkan, Polat; Kazaz, E.; 5743
    The four-legged Minaret of Sheikh Mutahhar Mosque has been constructed in the early 16th century during the Aq Qoyunlu Period in Diyarbakır, Turkey, which is located in the second most hazardous zone of the Turkish Seismic Zones Map. This is a special structure, because the minaret body has been placed on four cylindrical stone columns. Therefore, this minaret is seemingly vulnerable though it has survived for five centuries. We use the square cross sectioned minaret as a possible large-scale seismograph to examine the possible limits of ground motion that must have affected it without causing its collapse. In order to investigate the likely seismic performance and strength of the four-legged minaret, a model, which is very close to real structure, was generated with explicit dynamic code LS-DYNA. The developed model takes into account the material nonlinearities and the interface friction and contact behavior between the masonry units. It was displayed that the amplitude of the ground motion in Diyarbakır could not be 0.15g.
  • Article
    Citation - WoS: 0
    Citation - Scopus: 0
    Frame finite element model for nonlinear and vibration analysis of steel structures with Beam-Column and Column-Base Semi-Rigid Connections
    (Gazi Univ, Fac Engineering Architecture, 2022) Ozel, Halil Firat; Özel, Halil Fırat; Saritas, Afsin; 237150; İnşaat Mühendisliği
    In this paper, a shear deformable force-based frame finite element with semi-rigid connections is derived for nonlinear analysis of steel structures. Distributed plasticity approach is defined along element length and section depth, and linear or non-linear semi-rigid connection behavior can be specified anywhere along elements without the necessity to define additional nodes and to increase the degrees of freedom of the structural system. To perform vibration analyses with similar accuracy, force-based consistent mass matrix is used considering semi-rigidity in connections and an appropriate shear correction coefficient for I-sections. The element formulation is presented in 2 dimensions to simplify the formulation, and numerical validation and comparison studies are carried out on complex and irregular structures in 2-D and 3-D. In models with semi-rigid connections, the effect of nonlinear behavior on the structural system has been studied in both beam-column and column-bases. In the presented examples, it was possible to push structures higher than the existing displacements, and it was revealed that the nonlinear behavior in the column-base connections could create much more critical results for the structural systems with P-Delta effects. In addition, high-level accuracy results were obtained when performing vibration analyses with the application of force-based consistent mass matrix.