Sever, Hayri
Loading...
Profile URL
Name Variants
Sever, H.
Job Title
Prof. Dr.
Email Address
sever@cankaya.edu.tr
Main Affiliation
Bilgisayar Mühendisliği
Status
Current Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Files
Sustainable Development Goals
SDG data could not be loaded because of an error. Please refresh the page or try again later.

This researcher does not have a Scopus ID.

This researcher does not have a WoS ID.
Bibliometrics data could not be loaded because of an error. Please refresh the page or try again later.
Google Analytics Visitor Traffic
Scholarly output chart could not be loaded because of an error. Please refresh the page or try again later.
Journals could not be loaded because of an error. Please refresh the page or try again later.
Scopus Quartile Distribution
Quartile distribution chart could not be loaded because of an error. Please refresh the page or try again later.
Competency Cloud

29 results
Scholarly Output Search Results
Now showing 1 - 10 of 29
Conference Object Citation - WoS: 7Citation - Scopus: 13Small and Unbalanced Data Set Problem in Classification(Ieee, 2019) Sezer, Ebru Akcapinar; Sever, Hayri; Par, Oznur Esra; 11916Classification of data is difficult in case of small and unbalanced data set and this problem directly affects the classification performance. Small and / or the imbalance dataset has become a major problem in data mining. Classification algorithms are developed based on the assumption that the data sets are balanced and large enough. The most of the algorithms ignore or misclassify examples of the minority class, focus on the majority class. Small and unbalanced data set problem is frequently encountered in medical data mining due to some limitations. Within the scope of the study, the public accessible data set, hepatitis, was divided into small and imblanced data subsets, each of the data subsets were oversampled by distance based data generation methods. The oversampled data sets were classified by using four different machine learning algorithms (Artificial Neural Networks, Support Vector Machines, Naive Bayes and Decision Tree) and the classification scores were compared.Conference Object Detection of Stylometric Writeprint From the Turkish Texts(Ieee, 2020) Canbay, Pelin; Sever, Hayri; Sezer, Ebru Akcapinar; Sever, Hayri; 11916; Bilgisayar MühendisliğiAuthorship attribution studies aim to extract information about the author by analyzing the data in the text form. With the increase of anonymous authors in digital environments, the need for these works is increasing day by day. Although there exists lots of studies focuse on stylometric writeprint detection in different languages using different attributes, there is no standard feature set and detection algorithm to be evaluated in these studies. Giving priority to Turkish texts, in this study, which features are more distinctive for determining stylistic writeprint of text, and which methods will contribute to increase the success to be achieved are shown with experimental studies.Conference Object A Data Fusion Approach in Protein Homology Detection(2008) Sever, H.; Polatkan, A.C.; Oǧul, H.; 11916The discriminative framework for protein remote homology detection based on support vector machines (SVMs) is reconstructed by the fusion of sequence based features. In this respect, n-peptide compositions are partitioned and fed into separate SVMs. The SVM outputs are evaluated with different techniques and tested to discern their ability for SCOP protein super family classification on a common benchmarking set. It reveals that the fusion approach leads to an improvement in prediction accuracy with a remarkable gain on computer memory usage. © 2008 IEEE.Conference Object Production and Retrieval of Rough Classes in Multi Relations(Ieee Computer Soc, 2007) Tolun, M.R.; Sever, H.; Gorur, A.K.Organizational memory in today's business world forms basis for organizational learning, which is the ability of an organization to gain insight and understanding from experience through experimentation, observation, analysis, and a willingness to examine both successes and failures. This basically requires consideration of different aspects of knowledge that may reside on top of a conventional information management system. Of them, representation, retrieval and production issues of meta patterns constitute to the main theme of this article. Particularly we are interested in a formal approach to handle rough concepts. We utilize rough classifiers to propose a preliminary framework based on minimal term sets with p-norms to extract meta patterns. We describe a relational rule induction approach, which is called rila. Experimental results are provided on the mutagenesis, and the KDD Cup 2001 genes data sets. © 2007 IEEE.Conference Object Citation - WoS: 2Citation - Scopus: 14Securing Blockchain Shards by Using Learning Based Reputation and Verifiable Random Functions(Ieee, 2019) Ozsoy, Adnan; Sever, Hayri; Bugday, Ahmet; 11916In order to meet the increasing demand of the blockchain, it needs to find a solution to the scalability problem. It has been focused on sharding recently to address the scalability problem. In the sharding method, the blockchain is divided into pieces. Instead of a more extensive network, networks with fewer nodes are created. As a result, it becomes more important that each node in the network is reliable. In this study, studies using sharding method have been investigated, and methods for the assigning nodes to shards are proposed. The use of learning-based adaptive methods for this process will contribute to the safe and reliable use of shards. The probability of the shards to deteriorate and influence the whole blockchain will be reduced.Article Citation - WoS: 3Citation - Scopus: 3Binary Background Model With Geometric Mean for Author-Independent Authorship Verification(Sage Publications Ltd, 2023) Sezer, Ebru A.; Sever, Hayri; Canbay, Pelin; 11916Authorship verification (AV) is one of the main problems of authorship analysis and digital text forensics. The classical AV problem is to decide whether or not a particular author wrote the document in question. However, if there is one and relatively short document as the author's known document, the verification problem becomes more difficult than the classical AV and needs a generalised solution. Regarding to decide AV of the given two unlabeled documents (2D-AV), we proposed a system that provides an author-independent solution with the help of a Binary Background Model (BBM). The BBM is a supervised model that provides an informative background to distinguish document pairs written by the same or different authors. To evaluate the document pairs in one representation, we also proposed a new, simple and efficient document combination method based on the geometric mean of the stylometric features. We tested the performance of the proposed system for both author-dependent and author-independent AV cases. In addition, we introduced a new, well-defined, manually labelled Turkish blog corpus to be used in subsequent studies about authorship analysis. Using a publicly available English blog corpus for generating the BBM, the proposed system demonstrated an accuracy of over 90% from both trained and unseen authors' test sets. Furthermore, the proposed combination method and the system using the BBM with the English blog corpus were also evaluated with other genres, which were used in the international PAN AV competitions, and achieved promising results.Other Konumsal Erişim Yöntemleri(2007) Sever, Hayri; Gürçay, Haşmet; Ak, Serdar; 11916Otomatik konumsal veri toplama araçlarının kullanımının hızlıca artmasına paralel olarak konumsal içeriklerinin hacim olarak genişlemesi, geleneksel yöntemlerin ötesinde konumsal veritabanlarının etkin kullanılabilmesini gündeme getirmiştir. Konumsal verilere etkin erişim için, hızlı ve doğru sonuçlar üreten dizinleme yapılarının gerekliliği kaçınılmazdır. Konumsal erişim yöntemleri bilgisayar bilimlerinin çekirdek konularından birisini teşkil ettiğinden dolayı, yeni yöntemler veya yöntem eniyileştirmeleri devamlı önerilmekte ve birçok alanda kendisine uygulama bulmaktadır. Yeni yöntem önermede, değişmeyen ister konumsal erişim yöntemlerinin zaman ve uzay karmaşıklığının belli seviyelerde tutulmasıdır. Bu derleme makalede tüm bu gereksinimler ve bu gereksinimler sonucunda ortaya çıkmış bulunan bazı dizinleme yapıları ve yöntemleri incelenmektedir.Article Otomatik Konuşma Tanımaya Genel Bakış, Yaklaşımlar ve Zorluklar: Türkçe Konuşma Tanımanın Gelecekteki Yolu(2019) Oyucu, Saadin; Polat, Huseyin; Sever, Hayri; 11916İnsanlar arasındaki en önemli iletişim yöntemi olan konuşmanın, bilgisayarlar tarafından tanınması önemli bir çalışma alanıdır. Bu araştırma alanında farklı diller temel alınarak birçok çalışma gerçekleştirilmiştir. Literatürdeki çalışmalar konuşma tanıma teknolojilerinin başarımının artmasında önemli rol oynamıştır. Bu çalışmada konuşma tanıma ile ilgili bir literatür taraması yapılmış ve detaylı olarak sunulmuştur. Ayrıca farklı dillerde bu araştırma alanında kaydedilen ilerlemeler tartışılmıştır. Konuşma tanıma sistemlerinde kullanılan veri setleri, özellik çıkarma yaklaşımları, konuşma tanıma yöntemleri ve performans değerlendirme ölçütleri incelenerek konuşma tanımanın gelişimi ve bu alandaki zorluklara odaklanılmıştır. Konuşma tanıma alanında son zamanlarda yapılan çalışmaların olumsuz koşullara (çevre gürültüsü, konuşmacıda ve dilde değişkenlik) karşı çok daha güçlü yöntemler geliştirmeye odaklandığı izlenmiştir. Bu nedenle araştırma alanı olarak genişleyen olumsuz koşullardaki konuşma tanıma ile ilgili yakın geçmişteki gelişmelere yönelik genel bir bakış açısı sunulmuştur. Böylelikle olumsuz koşullar altında gerçekleştirilen konuşma tanımadaki tıkanıklık ve zorlukları aşabilmek için kullanılabilecek yöntemleri seçmede yardımcı olunması amaçlanmıştır. Ayrıca Türkçe konuşma tanımada kullanılan ve iyi bilinen yöntemler karşılaştırılmıştır. Türkçe konuşma tanımanın zorluğu ve bu zorlukların üstesinden gelebilmek için kullanılabilecek uygun yöntemler irdelenmiştir. Buna bağlı olarak Türkçe konuşma tanımanın gelecekteki rotasına ilişkin bir değerlendirme ortaya konulmuştur.Article Block Size Analysis for Discrete Wavelet Watermarking and Embedding a Vector Image as a Watermark(Zarka Private Univ, 2019) Sever, Hayri; Şenol, Ahmet; Elbaşı, Ersin; 11916As telecommunication and computer technologies proliferate, most data are stored and transferred in digital format. Content owners, therefore, are searching for new technologies to protect copyrighted products in digital form. Image watermarking emerged as a technique for protecting image copyrights. Early studies on image watermarking used the pixel domain whereas modern watermarking methods convert a pixel based image to another domain and embed a watermark in the transform domain. This study aims to use, Block Discrete Wavelet Transform (BDWT) as the transform domain for embedding and extracting watermarks. This study consists of 2 parts. The first part investigates the effect of dividing an image into non overlapping blocks and transforming each image block to a DWT domain, independently. Then, effect of block size on watermark success and, how it is related to block size, are analyzed. The second part investigates embedding a vector image logo as a watermark. Vector images consist of geometric objects such as lines, circles and splines. Unlike pixel-based images, vector images do not lose quality due to scaling. Vector watermarks deteriorate very easily if the watermarked image is processed, such as compression or filtering. Special care must be taken when the embedded watermark is a vector image, such as adjusting the watermark strength or distributing the watermark data into the image. The relative importance of watermark data must be taken into account. To the best of our knowledge this study is the first to use a vector image as a watermark embedded in a host image.Publication Production and retrieval off rough classes in multi relations(IEEE Computer Soc, 2007) Tolun, Mehmet R.; Sever, Hayri; Görür, Abdül Kadir; 11916; 107251Organizational memory in today's business world forms basis for organizational learning, which is the ability of an organization to gain insight and understanding from experience through experimentation, observation, analysis, and a willingness to examine both successes and failures. This basically requires consideration of different aspects of knowledge that may reside on top of a conventional information management system. Of them, representation, retrieval and production issues of meta patterns constitute to the main theme of this article. Particularly we are interested in a formal approach to handle rough concepts. We utilize rough classifiers to propose a preliminary framework based on minimal term sets with p-norms to extract meta patterns. We describe a relational rule induction approach, which is called rila. Experimental results are provided on the mutagenesis, and the KDD Cup 2001 genes data sets.
- «
- 1 (current)
- 2
- 3
- »
