Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Sparse Coding of Hyperspectral Imagery Using Online Learning

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Springer London Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate-distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques.

Description

Toreyin, Behcet Ugur/0000-0003-4406-2783

Keywords

Sparse Coding, Hyperspectral Imagery, Anomaly Detection, Online Learning

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ülkü, İ., Töreyin, B.U. (2015). Sparse coding of hyperspectral imagery using online learning. Signal Image And Video Processing, 9(4), 959-966. http://dx.doi.org/10.1007/s11760-015-0753-9

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
10

Source

Volume

9

Issue

4

Start Page

959

End Page

966
PlumX Metrics
Citations

CrossRef : 10

Scopus : 10

Captures

Mendeley Readers : 9

SCOPUS™ Citations

10

checked on Nov 25, 2025

Web of Science™ Citations

8

checked on Nov 25, 2025

Page Views

3

checked on Nov 25, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.25241975

Sustainable Development Goals

SDG data is not available