Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Sparse Coding of Hyperspectral Imagery Using Online Learning

dc.contributor.author Toreyin, Behcet Ugur
dc.contributor.author Ulku, Irem
dc.contributor.authorID 17575 tr_TR
dc.contributor.authorID 19325 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 06.03. Elektrik-Elektronik Mühendisliği
dc.date.accessioned 2017-03-09T12:53:43Z
dc.date.accessioned 2025-09-18T14:09:11Z
dc.date.available 2017-03-09T12:53:43Z
dc.date.available 2025-09-18T14:09:11Z
dc.date.issued 2015
dc.description Toreyin, Behcet Ugur/0000-0003-4406-2783 en_US
dc.description.abstract Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate-distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques. en_US
dc.description.publishedMonth 5
dc.description.sponsorship Scientific and Technical Research Council of Turkey under National Young Researchers Career Development Program (3501 TUBITAK CAREER) grant [114E200] en_US
dc.description.sponsorship This work is supported in part by the Scientific and Technical Research Council of Turkey under National Young Researchers Career Development Program (3501 TUBITAK CAREER) grant with agreement number 114E200. Authors are grateful to Mustafa Teke for his assistance in obtaining RX detection results. An earlier version of this study was presented in part at the IEEE International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) 2014 [17]. en_US
dc.identifier.citation Ülkü, İ., Töreyin, B.U. (2015). Sparse coding of hyperspectral imagery using online learning. Signal Image And Video Processing, 9(4), 959-966. http://dx.doi.org/10.1007/s11760-015-0753-9 en_US
dc.identifier.doi 10.1007/s11760-015-0753-9
dc.identifier.issn 1863-1703
dc.identifier.issn 1863-1711
dc.identifier.scopus 2-s2.0-84925500335
dc.identifier.uri https://doi.org/10.1007/s11760-015-0753-9
dc.identifier.uri https://hdl.handle.net/20.500.12416/13309
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Sparse Coding en_US
dc.subject Hyperspectral Imagery en_US
dc.subject Anomaly Detection en_US
dc.subject Online Learning en_US
dc.title Sparse Coding of Hyperspectral Imagery Using Online Learning en_US
dc.title Sparse coding of hyperspectral imagery using online learning tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Toreyin, Behcet Ugur/0000-0003-4406-2783
gdc.author.institutional Töreyin, Behçet Uğur
gdc.author.scopusid 57219399185
gdc.author.scopusid 9249500700
gdc.author.wosid Ulku,, Irem/Ahd-8857-2022
gdc.author.wosid Toreyin, Behcet Ugur/A-6780-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ulku, Irem; Toreyin, Behcet Ugur] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey; [Toreyin, Behcet Ugur] Sci & Technol Res Council Turkey TUBITAK, Space Technol Inst UZAY, TR-06800 Ankara, Turkey en_US
gdc.description.endpage 966 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 959 en_US
gdc.description.volume 9 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W2071592459
gdc.identifier.wos WOS:000351588900020
gdc.openalex.fwci 1.25241975
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 10
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 8
relation.isAuthorOfPublication 31d067df-3d94-4058-a635-943b70f82ea4
relation.isAuthorOfPublication.latestForDiscovery 31d067df-3d94-4058-a635-943b70f82ea4
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files